
Editor’s Note: Sailing With the Wind 2

IndustryWatch: When One Door
Shuts, Another Opens 3

GeoPort Goes Cross-Platform 9

Apple Ships Macintosh Quadra 610
DOS Compatible Computer 10

MAE Expands Your Market to
UNIX Users 10

CD Highlights 11

Human Interface 12

Understanding the Power Macintosh
Architecture, Part Two: A Skeleton
Key to Mixed-Mode Issues 14

How to Order The High-Tech
Marketing Companion 20

Market Research Monthly:
Multimedia Market 20

Expanding Your Market Through
a Developer Program 21

APDA Ordering Information 24

Don’t Miss This Year’s
Developers Conference
As we go to press, there’s still room at this
year’s Worldwide Developers Conference, to
be held May 15–20 at the San Jose Conven-
tion Center. You can register electronically
by using a form posted on AppleLink
(path—Developer Support:Developer Ser-
vices:Events/Marcom:WWDC). Or, contact
1994 Apple Worldwide Developers Confer-
ence, CMI, 120 Montgomery Street, 5th
Floor, San Francisco, CA 94104, U.S.A.; fax:
415-598-4301.

Strategy MosaicApple News

The Developer Business Report

Inside This Issue

AppleDirections
May 1994
please turn to page 8

Power
Macintosh
Tools
Announced
The announcement of a full suite of Power
Macintosh development tools by Apple Com-
puter, Inc., and 13 tool vendors capped Power
PC–related developments in the weeks imme-
diately following the shipment of the first
Power Macintosh computers.

Apple followed up on its March 14 world-
wide introduction of the next generation,
RISC-based Macintosh systems by announcing
the third-party tools plans in addition to other
news about the new computers, including
these items:

• Apple released the next version of its
Macintosh on RISC Software Developer’s
Kit (SDK).

• Power Macintosh computers outper-
formed Pentium-based PCs in tests con-
ducted by Ingram Laboratories.

Additionally, IBM and Motorola announced
a new version of its PowerPC 601 microproces-
sor, the chip that drives the first Power Macin-
tosh computers, that will run at 100 MHz.
Volume manufacturing of the 100 MHz Power-
PC 601 is expected to begin in the fourth
Staying Bullish
on Newton
By Gregg Williams, Apple Directions staff

I like getting letters because they let me know
what developers are thinking. Some weeks
ago, I got a letter that caught me by surprise
because it flamed about what I thought was a
pretty good column—my February 1994 col-
umn about last December’s Newton Platform
Development Conference. (For those of you
not familiar with the term, “flaming” occurs
when someone writes, usually by e-mail, to
disagree rather emotionally with what the
recipient of the flame said previously.)

The letter had some valid points, and I
realized that other developers might be asking
the same questions. So I thought I’d share my
reply with you:

Pete,
Congratulations on writing a truly *effec-

tive* flame—emotional enough for you to
vent your emotions, but with enough infor-
mation and poorly concealed politeness
<gasp!> to form the basis for a true discus-
sion. I hope that this reply will cause you to
take another look at my article and your
opinions of both it and the Newton platform.

Much of your letter is summed up in your
statement “How can I be sure this product is
going to be around for a while? I am deeply
concerned! The installed base is only 80,000,
most of whom seem to be developers, the press

please turn to page 4

AppleDirections
2 News

AppleDirections
Volume 2, Number 5

Apple Directions, the monthly developer newsletter
of Apple Computer, Inc., communicates Apple’s
strategic, business, and technical directions to
decision makers at development companies to help
maximize their development dollar. It is published
by the Developer Support Information group within
Apple’s Developer Press.

Editor
Paul Dreyfus (AppleLink: DREYFUS.P)

Technical Editor
Gregg Williams (GREGGW)

Business & Marketing Editor
Dee Kiamy (KIAMY)

Designer
Robert Stone

Production Editor
Lisa Ferdinandsen (LISAFERD)

Contributors
Juan Bettaglio, Pete Bickford, Alex Dosher,
Tim Enwall, Amanda Hixson, Caroline Rose,
Anne Szabla, Jessa Vartanian, Mark Vernon

Manager, Developer Press
Dennis Matthews

Manager, Developer Support Information
Greg Joswiak

Production Manager
Diane Wilcox

PrePress/Film
Aptos Post

Printer
Wolfer Printing Co., Inc., Los Angeles, CA

© 1994 Apple Computer, Inc., 20525 Mariani Ave., Cupertino,
CA 95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleLink, AppleTalk, HyperCard,
Macintosh, Macintosh Quadra, MPW, Newton, PowerBook, and
TokenTalk are trademarks of Apple Computer, Inc., registered in
the U.S. and other countries. AppleGlot, AppleScript, Balloon
Help, develop, DocViewer, Finder, GeoPort, Macintosh Centris,
MessagePad, NewtonScript, OpenDoc, PhotoFlash, PowerBook
Duo, QuickDraw, StarCore, and TrueType are trademarks of
Apple Computer, Inc. Adobe, Dimensions, Illustrator, Photo-
shop, and Premiere are trademarks of Adobe Systems Incorpo-
rated, which may be registered in certain jurisdictions. NuBus is
a trademark of Texas Instruments. PowerPC is a trademark of
International Business Machines Corporation, used under
license therefrom. UNIX is a registered trademark of UNIX
System Laboratories, Inc. X Window System is a trademark of
the Massachusetts Institute of Technology. All other trademarks
are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation. All product specifications and descriptions
were supplied by the respective vendor or supplier. Apple
assumes no responsibility with regard to the selection, perfor-
mance, or use of the products listed in this publication. All
understandings, agreements, or warranties take place directly
between the vendors and prospective users. Limitation of
liability: Apple makes no warranties with respect to the contents
of products listed in this publication or of the completeness or
accuracy of this publication. Apple specifically disclaims all
warranties, express or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular
purpose.

Editor’s Note
Sailing With the Wind

The press has been saying a lot of positive
things about Macintosh computing lately,
both the computers and the software that
runs on them. A nice change, at least from
our perspective, and I’d imagine from yours.
As Ian Diery, general manager and vice pres-
ident of Apple’s Personal Computer Divi-
sion, said at the Power Macintosh introduc-
tion event, “The wind is at our backs.”

You and I have known for a long time that
the Macintosh platform and your products
have great things going; it looks like some
influential analysts and writers now agree,
thanks in part to the introduction of Macin-
tosh computers with PowerPC RISC micro-
processors.

Take, for example, the latest Microsys-
tems Service report from market research
firm Computer Intelligence. In this report,
the InfoCorp subsidiary’s analysts conclude,
“We expect the Apple Power Macintosh to
be one of Apple’s highest volume, most
successful product families.”

Then there’s Bill Machrone’s column in
PC Week (yes, that’s the trade publication for
owners of PC/DOS/Windows machines) last
month, in which he says, “My next computer
will be a PowerPC.”

He has a lot of positive things to say
about Macintosh computing:

Apple appears to be a good six months
ahead of IBM in terms of product develop-
ment and software integration. It has
worked out the important elements of soft-
ware compatibility and legacy applica-
tions. Not only does the new generation of
Power Macs run all the old 680x0 Macin-
tosh programs, but through Insignia’s Soft-
Windows, it runs most Windows and DOS
applications, too.

I’m excited by the creativity going into
the applications themselves. The sheer per-
formance boost of the PowerPC frees design-
ers to do things they would never have
attempted on a desktop machine, such as
real-time zooms and drags, rich 3-D inter-
faces, and software-based voice synthesis
and recognition. In all cases, real time
means real fast.

I also want a machine that’s more tightly
integrated than anything from the Intel
M A Y 1 9 9 4
camp. I’m tired of conflicting drivers, hard-
ware interrupts, and programs that fall
down and go boom just because I loaded a
new app or a new piece of hardware.

Then, of course, there’s MacWEEK’s Feb-
ruary 28 lead story, “The 6100: Mac RISC Pays
Off,” in which three writers, none of them
known to be shy about ripping new products
(and Apple) to shreds, give the new Power
Macintosh 6100/60 very high marks.

According to Rick LePage, Robert Hess,
and Stephen Howard,

Last week, MacWEEK’s news group com-
pleted its first compatibility and performance
tests on a prerelease Power Macintosh
6100/60. The results of our testing—which
was done without Apple’s knowledge or
cooperation—give ample credence to the
company’s claim that PowerPC-based Macs
will offer very high compatibility with today’s
software. Although we examined the low-end
model, in some areas Apple exceeded even
the lofty expectations it has generated.

Despite being loaded with current exten-
sions, control panels, and fonts written for
existing 680x0 Macintosh computers, the
computer MacWeek test-drove started up
without problems. Of nearly 100 680x0-based
Macintosh applications, only one crashed the
Power Macintosh system. As far as perfor-
mance went, the writers conclude that

The 60-MHz PowerPC most closely
matched a PowerBook Duo 270c, which has
a 33-MHz ’030. However, in window
scrolling and disk and memory access, the
Power Mac’s results rivaled 25-MHz and 33-
MHz ’040 systems.

To go along with all the positive Macin-
tosh reports, I’ve also been noticing more
negative reports about the competition. For
example, in a March 1 story called “Befud-
dled PC Users Flood Help Lines, and No
Question Seems to Be Too Basic,” the Wall
Street Journal reported that, although the
manufacturers of IBM PC compatibles “are
finally having great success selling PCs to
households, they now have to deal with
people to whom monitors and disk drives
are as foreign as another language.”

The story listed a variety of basic prob-
lems first-time users have with PCs. My

News 3
AppleDirections
favorite: “So many people have called [one
leading manufacturer] to ask where the ‘any’
key is when ‘Press Any Key’ flashes on the
screen that [the company] is considering
changing the command to ‘Press Return
Key.’ ”

Of course, this is a problem Macintosh
users might also encounter, but the point is
that not once did the story mention that new
customers have been plaguing Apple’s cus-
tomer support folks.

Another PC story, in the March 20 San
Jose Mercury News, points out a problem
with PC compatibles that Macintosh users
won’t have to deal with: Apparently, many
machines that run DOS/Windows use a bat-
IndustryWatch: News & Perspe

Apple Directions On Lin
The June issue of Apple Directions will be avail
on May 15. To view the June issue of Apple Dire
low the AppleLink path Developer Support:Dev
Periodicals:Apple Directions:Apple Directions Ju
tery to run the CMOS (complementary
metal-oxide semiconductor) chip that goes
dead after a couple of years. (The Macintosh
computer instead uses long-life lithium or
self-charging batteries.) When a PC is turned
off, the CMOS chip stores time, configuration
information, and other data PCs need for
starting up. When the battery runs out, the
PC just won’t start and may lose the vital
data. When PC users try to boot up, they see
a message telling them that the computer
“cannot find configuration.”

According to estimates reported in the
story, some 3 million users who purchased
their PCs in 1991 and 1992 might see that
error message this year. If they do, they have
M A Y 1 9 9 4

ctive

e–June
able on AppleLink
ctions on line, fol-
eloper Services:
ne 1994.
to reset their machines with setup informa-
tion after they get a new battery. Don’t you
think those are 3 million users who are going
to consider switching to Power Macintosh
computers, real soon?

As Ian Diery said, with more positive ink
than Apple and the Macintosh computer
have gotten in a long time, it feels like we’re
no longer having to fight a strong head wind
just to stay in the same place. That doesn’t
mean we stop working hard; instead, it
means that all the effort will let us cover
more distance than ever before and greatly
expand our marketshare.

Paul Dreyfus
Editor
When One Door Shuts, Another Opens

By Amanda Hixson, Director of Licensing,
InfoWorld Publishing Company

Well, by now I’m sure you’ve heard that it’s Adobe über Aldus—that is,
that Adobe has taken over Aldus—and that Novell is gobbling up Word-
Perfect while taking a big chunk out of Borland as well. Toss in the
Electronic Arts mash with Brøderbund and things are looking pretty
grim for small companies in traditional softwareland these days; merger
mania and corporate buyouts seem to be de rigueur.

Unlike some prognosticators, I don’t think this necessarily means
that the end of the garage shop is drawing near and that you should all
expect to be servants of Microsoft or some other corporate giant in the
near future. Much like the publishing industry some years back, the
software industry seems to be rushing together to the point where we
can expect to see three or four huge planetary bodies—say Microsoft,
Lotus, Novell, and possibly a dark horse like Computer Associates—
emerge to roam the software heavens. Each of these companies will
probably own or have alliances with a number of smaller publishers,
much the way each major publishing firm holds its own niche publish-
ing satellite companies in tight orbit.

Like the book publishing industry, in which startup publishers flare
up and then burn out as they enter the atmospheres of their larger
cousins, small software publishers will continue to emerge and be
consumed as the giants spin through their orbits. The trick is to gauge
the paths of the large bodies and avoid their quadrants of space.
As difficult as that sounds, there are still new technologies emerging
every day, and with them come opportunities for small companies.
Multimedia is a great example of this, as more and more products
emerge in this area, and as customer demand for them increases. (For
data about the rapidly growing market for multimedia products, see
this month’s Market Research Monthly on page 20.)

Another area of potential growth is in on-line delivery of informa-
tion. In my job as InfoWorld’s director of licensing, I spend a lot of
time on line and I see numerous developer opportunities in this
arena. For example, we still don’t have great tools for moving large
blocks of graphic data quickly and economically over any existing on-
line services. In those places where there is an ability to move infor-
mation, such as on the Internet, there are some serious constraints
resulting from trying to do things that work for the least-common
denominator hardware configuration. People will definitely make
money if they can figure out how to do more to deliver graphics and
sound within the constraints of NCSA Mosaic, for example, to a
broad range of users. (NCSA Mosaic is an interface that lets you point
and click on hyperlinks to move easily around the Internet; it is
available on the net or on discs that accompany several books about
the Internet).

Additionally, I believe that we’ll see the emergence of entirely new
forms of software as we move to object-based operating systems and
frameworks such as OpenDoc. Monolithic products—such as tradition-
al word processors and spreadsheets—will no longer make sense. It is
possible to make money selling component software and agents; also,
with products such as QuickDraw GX, you’ll be able to execute incredi-
ble features with a minimum of code.

Fahren on the InfoBahn
I now have an on/off-ramp to the InfoBahn in my living room. That’s
right, I now have an ISDN line, a bridge, and all the appropriate con-
nections to connect to the Internet. And let me tell you that connecting

4 News
AppleDirections
has canned it, and no one is
currently buying it.”

I have some other points to
make, but the most important one
causes me to point you to an
article in Apple Direct (as it used
to be called), the May 1992 issue,
page 9. (You can even find it on
the March 1994 Developer CD,
pathname Dev.CD Mar 94:Refer-
ence Library:Periodicals:Apple
Directions:Apple Direct 1992, in
the Business and Marketing folder
for that issue.) The article, “Cross-
ing the Chasm,” is by Geoffrey
Moore of Regis McKenna, Inc.,
and it’s really worth your time.

Mr. Moore’s thesis is that every
new technology that survives
goes through three stages: the
early market, the “chasm,” and
the mainstream market. The
early market, of course, comes
from “early adopters,” the people
who just love the technology so
much that they have to have it.

Mr. Moore describes the peri-
od of the “chasm” as follows:

“During this time, the product
has by now been on the market
long enough for technology

Strategy Mosaic

Staying Bullish
on Newton
continued from page 1
enthusiasts and visionaries to
have heard about it and, if they
are interested, to have bought it.
But the product is not yet estab-
lished as a ‘safe’ buy; it has not,
in other words, secured a mar-
ket-leadership position in any
particular segment of the mar-
ket. From the point of view of a
pragmatist or a conservative, it
is simply too soon to take a
chance on the purchase. As a
result, during the chasm phase,
sales dip precipitously—often
just at the point where you have
promised your investors a surge
in revenue.”

Sound familiar?
What does it take to get across

the chasm into the mainstream
market, the place where Mr.
Moore says “all high-tech wealth
is generated”? Several things
(which is why you should read
the article). He sums up his ideas
by saying that a technology can’t
navigate past the chasm until the
“whole product” is there:

“The whole product is the
complete solution, the entire set
of products and services needed
by users to achieve the value
proposition promised by the
product you are selling. Pragma-
tists evaluate products based on
whether the whole product is a
proven solution and one that is
readily available. Until it is, they
won’t buy.”
M A Y
Now, from what some of the
speakers at the Newton confer-
ence said (all this is in my Febru-
ary 1994 Strategy Mosaic), a
wireless communications infra-
structure will be part of the
whole product, and Robert
Growney of Motorola said that
his company would deliver two-
way wireless technology “in
1994.” My piece also said that
developers who had created
Newton products estimated that
doing so takes “3.5 to 5.5
months.” Granted, your compa-
ny isn’t going to be doing com-
munications products. But if that
were a possibility for your com-
pany, you could do the arith-
metic and conclude that, if you
wanted to be in on the ground
floor of this market, you’d better
get started, soon.

As you well know, everything
in business revolves around a
tradeoff between risk and prof-
itability. The only way to *be*
there when the Newton market
really takes off is to start working
on products before the market
emerges. Sure, there’s a risk there,
but you must accept that if you
want the *big* win. In short, you
gamble. If you want a medium or
small win, though, the right thing
to do is to wait and see.

But, you say, my Strategy
Mosaic gives no information on
which to base a hunch that the
1 9 9 4
Newton *is* worth taking a risk
on. Frankly, I think you should
read my article again. The
quotes are from top people at
companies like Motorola, Bell-
South MobilComm, Sharp, and
Monsanto. (Some consultants
quoted were also staking their
careers on what they said at that
conference.) Don’t you think
their opinions are worth some-
thing? Don’t you think that even
the fact that they chose to speak
at the conference means some-
thing? As I said in my Strategy
Mosaic, this isn’t just Apple telling
you how great things are going to
be, this is people from other com-
panies saying the same thing—
and remember that they’re
putting *their* time and money
into Newton development, too.

Here are some other thoughts
related to the Newton and your
concerns:

• I’m sure you’ve considered
the parallels to the Macintosh
128K. It took a *long* time to
grow, but look where it is today.
Some dissimilarities are also
important: the Macintosh *didn’t*
have a developer conference with
700 paying customers five months
after it was introduced, nor did it
have several products shipping
several months after introduction.
The Newton did.

• The press has canned it,
you say. Not totally true. The
to the Internet at 56 kilobits per second from my Macintosh Quadra
800 computer is way cool. So why am I telling you this? Simple. I think
there are a number of opportunities for software developers and peo-
ple with other types of software expertise on the Internet.

Another interesting thing about the Internet: People are always
looking for, and broadcasting, information about software and software
development. If you spend some time surfing the net, you’re bound to
locate interesting software ideas, as well as some potential program-
mers and software authors. If you haven’t spent any time on the net, I’d
suggest you give it a try.

Microsoft to Offer Decryption Over Telephone Lines
According to an article on the Dow Jones News Service, Japan’s Nippon
Telegraph and Telephone (NTT) and Microsoft are joining forces to add a
new wrinkle to the delivery of software by CD-ROM. The new Microsoft
and NTT scheme is different from some current schemes, such as that
used by Apple’s Software Dispatch group, where the customer calls a
telephone number, gives a credit card number and then receives an
unlocking code from an operator to unlock and install a particular soft-
ware package from a CD-ROM. The Microsoft and NTT agreement allows
users to have their computer call a telephone number that connects
them to another computer and then download a decryption key by
modem. Look for this service to be available in about a year.

This method seems to remove one of the highest costs in this type
of delivery; the transaction cost resulting from having human operators.
If it’s successful, you can expect to see other distributors soon follow
suit. ♣

Amanda Hixson, long-time Apple veteran, high-tech journalist, and
industry analyst, is currently director of licensing for InfoWorld maga-
zine. She can be reached at A.HIXSON on AppleLink.

News 5
AppleDirections
early press canned it because
they wanted to get something out
quickly and didn’t have the time
to come to understand the prod-
uct. But when Macworld got
around to actually *reviewing*
the Newton MessagePad (Decem-
ber 93, page 52), their review was
much fairer. (In fact, it ended
with “Although Apple released the
Newton about four months early,
and marketing claims led to
mistaken expectations about the
details of handwriting recogni-
tion, the Newton MessagePad is
an intelligent piece of work with
an impressive variety of serious
business uses.”) Unfortunately,
that review didn’t make the cover
of the magazine, and most peo-
ple never saw it. But I do agree
with you that Apple needs to do
more to counter the bad press the
Newton has gotten.

I hope *my* flame to you
contains more light than heat,
and I hope it may change your
mind on some points. Though I
(an avowed liberal) cringe at
doing so, let me close by offering
you some conservative advice:
Stay the course. Let Newton be
Newton. ;-)

Best wishes,
Gregg Williams

Apple Directions

(FYI, Pete sent me a well-
thought-out reply that agreed with
some points but chided me for not
talking about “the chasm” in my
Strategy Mosaic last February. I
decided he was right, and his com-
ments led me to write this column.)

But wait—there’s more! In the
past few days, I’ve had conversa-
tions with Apple PIE (Personal
Interactive Electronics) division
management, engineers, Devel-
oper Technical Support, and
testers. The information in the
rest of this column is based on
these conversations.

Adding to My Letter
Before I go on to other Newton-
related topics, I’d like to add
some things to what I said in my
letter to Pete. First, I recently
read another statistic that puts
Newton MessagePad sales in a
brighter light. In the Feb. 21,
1994 issue of MacWEEK, Richard
Shaffer, principal analyst of Tech-
nologic Partners and a well-
known mobile computing guru,
said, “The PDA category sold
100,000 to 110,000 units the first
year. Compared to the CD play-
er—the hottest consumer-elec-
tronics product ever—which sold
about 35,000 units the first year,
PDAs look quite good.” I don’t
mean to imply that PDAs will be
the same kind of “horizontal”
product that CD players are, but
given that the Newton Message-
Pad has sold over 80,000 units
and it hasn’t even been a full
year yet, I think it’s premature—
and even irresponsible—to call
the Newton a failure. New tech-
nologies take time to gain wide-
spread consumer acceptance,
and the Newton platform is no
exception.

The second thing I want to
mention relates to my thoughts
on the necessity of developing in
advance of the wireless communi-
cations market. I recently asked a
Newton engineer what develop-
ers should do to prepare for
wireless technologies. His answer
boils down to one sentence: To
prepare for wireless, develop for
modem.

The Newton Toolkit gives you
access to a prototype called an
endpoint, which Newton docu-
mentation defines as “the interface
between the user and an underly-
ing transport mechanism.” The
endpoint interface isolates the
Newton programmer from the
details of connecting with remote
devices. This means you can create
(and even market) a product that
uses a modem to communicate
with remote computers and
devices. Then, when wireless com-
munications become possible, you
simply change the endpoint code,
and your program is now a wireless
M A Y
application! So if you’re thinking of
getting into the wireless communi-
cations market, there’s good rea-
son to get started now.

Finally, one thing I should
have mentioned in my letter to
Pete is how good a development
environment the Newton Toolkit
is and how it complements the
sophisticated Newton software
architecture. Having programmed
the Newton, my experience is
that, compared to the Macintosh,
the learning curve for Newton is
about one-tenth as hard, you can
do about ten times as much, and
the process is several times more
fun. Since you program your
Newton application incrementally,
you’re always making visible
progress. Your compile cycle can
be as short as a few minutes, and
you can create a commercial-
quality application in a few
months. The Newton Toolkit
makes programming fun again.

Newton Markets
Probably the most important infor-
mation I got from PIE manage-
ment came from Philip Ivanier,
manager of the PIE Development
Relations Group at Apple. He said
that you should definitely focus on
providing business solutions.
Apple is selling Newton
MessagePad devices in record
numbers (thousands of units at a
time) to corporations who will be
giving them to their sales and
service forces. We’re talking some
big companies here, but I can’t
disclose their names because they
consider their use of Newton
devices a major competitive advan-
tage over their competition. I can,
however, say that the Monsanto
Company has made an initial
purchase of 2,000 Newton Mes-
sagePad devices to start a commer-
cial service called Infielder (see
text box on page 6 for details).

So what does that mean for
you? It means several possibilities
for making money. Most directly,
if you have Newton programming
expertise, you can do consulting
1 9 9 4
or custom programming for these
corporations, who will need cus-
tom applications for all the New-
ton devices they’ve bought.

Many companies will want to
keep their development in-house.
No problem—there’ll be a small
but profitable market for develop-
ment tools, toolkits, and cus-
tomizable frameworks that will
help them get their applications
developed as quickly as possible.

Finally, as more and more
people are handed Newton
devices, the more they’ll be look-
ing for shrink-wrapped “horizon-
tal” business and productivity
applications and enhancements.
In time, with more Newton
devices visible to the general
public (and lower prices, better
applications, and more capable
Newton models), the consumer
market will grow and become
more important.

According to one PIE manager,
many developers seem to be
overlooking one particular
strength of Newton devices: their
extreme usefulness in gathering
data in the field. A few Newton
applications do so, and are very
useful because of it. What do
these applications do with such
data? They connect to modems
and phone lines and exchange
data (in both directions) with
databases on everything from
personal computers to main-
frames. (There’s that communica-
tions angle again. . . .)

And don’t forget anecdotal
data—data that people in the
field can collect just because they
happen to have a Newton device
with them. One company is using
Newton devices to take customer
orders—but the application that
does so also allows the salesper-
son to note how much shelf
space competing products are
getting. Such information, gath-
ered over an entire sales region,
will help that company make
better decisions.

The Newton Toolkit also allows
you to transform text files into

6 News
AppleDirections
digital books, which Newton
devices can display and search
(among other things)—and creat-
ing digital books is even easier
than creating Newton applica-
tions. Every profession has refer-
ence material that its practitioners
would like to have close at hand,
which means there’s a vertical
market for digital books.

Digital books of more general
interest are also possible. What
about an easy-to-use grammar
book or dictionary of frequently
misspelled words? A directory of
consumer-electronics customer
service phone numbers? A how-to
manual for Adobe™ Photoshop
or Microsoft Windows? Some
enterprising developer could team
up with a publisher and make
quite a market for how-to books
adapted to digital book format.

So let’s say you have an idea
for a Newton application but
The Monsanto Company has bought
MessagePad devices to start a new
Infielder Crop Records System. Is th
Well, I have in hand a four-color broc
promotional videotape for it, and any
386DX IBM-compatible computer—y
computer that the farmer already ow
for $999. This includes a Newton Me
tom software for both the Newton M
the PC, and a 12-month subscription
services from Monsanto.

Infielder allows farmers to use eit
Newton MessagePad, whichever is h
track of the details of their farming. B
ing records of how their land is being
weather is like, how much food each
produces, what fertilizers have been
farmers can begin to see exactly how
doing. (They enter much of this data
MessagePad while in the field—whic
wouldn’t do if they had to write the d
type it back into the PC.)

Once they’ve dumped the raw dat
PC can then not only analyze the field
but also generate fertilizer- and pesti
required by the Environmental Protec

Infielder—Tak
don’t want to go it alone. (The
smaller your company, the more
likely this is.) You may want to
consider contacting StarCore,
PIE’s publishing and distribution
group. If StarCore decides to
publish your product, it will take
care of many of the details of
publishing and pay you royalties
based on sales. If you use Star-
Core to distribute your program,
you take on more risks and
responsibilities and may make
more money by doing so. You can
contact Sam Parker regarding
publication or Ivy Millman regard-
ing distribution. Both can be
reached at StarCore, 5 Infinite
Loop, MS 305-4A, Cupertino, CA
95014.

Product Ideas
When asked what would make
a good Newton product, sever-
al PIE employees described
M A Y

2,000 Newton
service called the
is a real service?
hure and a
 farmer with a
es, the very

ns—can buy it
ssagePad, cus-
essagePad and
 to various

her their PC or a
andy, to keep
y keeping ongo-
 used, what the

 acre of land
used, and so on,
 well they’re

 on the Newton
h they probably
ata down and

a into the PC, the
s’ productivity

cide-use reports
tion Agency. In

addition, farmers c
agement practices
to, which allows th
techniques and yie
ing under similar c
farmers may be ab
increase the yields

What does Mon
er to its customers
also gets anecdota
cals farmers are us
what degree of suc
streamline its oper
customers’ needs.

This is a good e
ness solutions that
platform. Now ima
of salespeople on th
tors and healthcare
researchers, realtor
There are good dev
first, to get Newton
people by giving th
to sell them additio
usefulness of the N
using.

ing Newton Int
something that would be the
Newton equivalent of a FileMaker
Pro. (It’s an axiom of Newton
development that trying to port a
Macintosh application to the
Newton ignores the differences
between the two and will almost
always result in a mediocre prod-
uct.) As Bob Ebert, a PIE DTS
engineer put it, “The application
I envision will be sort of like, but
entirely different from, FileMaker
Pro. It’ll be more of a data-collec-
tion, data-browsing, and forms-
building application, with ties to
a mainframe or desktop.”

Given the suitability of Newton
devices for data gathering, any
application that will let users
create customized databases (and
the human interfaces for viewing
and manipulating them) will be
successful. End-users will want it,
in-house developers will want it—
you may even be able to create
1 9 9 4

an connect to a “best crop man-
database” maintained by Monsan-
em to compare their farming
lds to those of other farmers work-
onditions. By studying these data,
le to make changes that will
 of their farms.
santo get out of this? It gets clos-
, which is always a good thing. It
l data that indicates what chemi-
ing, how much, what for, and with
cess—which will help Monsanto
ations and anticipate its

xample of the exciting new busi-
 will be created around the Newton
gine Newton devices in the hands
e road, warehouse workers, doc-

 professionals, stock traders,
s, repair people working on site. . . .
eloper opportunities out there:
 devices into the hands of all these
em custom solutions; and second,
nal products that enhance the
ewton devices they are already

o the Field
two different versions, each opti-
mized for its intended audience.
Different users will have different
needs, so I can see the market
supporting more than one such
product.

Another useful product that
came up in conversation was
described as “something that
stands between me and my Meet-
ing Maker” (or other networked
scheduling application). Such a
product would have to include
the ability to download your
schedule from the server, modify
it, and update the server. As with
a database program, it must be
incredibly easy to use—or people
will not bother to use or buy it.

Another idea is an enhanced to-
do list that works the way people
work. It should take care of items
that are partially completed—also
items that, when completed, auto-
matically generate additional items
(tasks or reminders) for a future
date. It might also alert the user
regarding items that have a dead-
line or some other constraint
attached to them. Such an applica-
tion might even include some
amount of critical-path project
management in it.

Just about any vertical market is
a source of Newton applications—
the only limitation is whether or
not you can make enough money
from it to justify the effort. Take
any profession that comes to
mind—plumbers, car salespeople,
grocery store managers, librarians,
pilots—follow them around and
take notes. You can probably find
at least half a dozen things that,
together, would make a good
Newton application for them.
If you can do something for them
that is compelling enough, they’ll
buy a Newton MessagePad just to
run your application. Years ago,
people bought Apple II comput-
ers (which were far more expen-
sive than Newton MessagePad
devices) just to run VisiCalc
spreadsheets.

And it bears saying—again—
that you shouldn’t think of

News 7
AppleDirections
porting your Macintosh or Win-
dows application to the Newton
platform. Instead, think about
using the Newton to enhance or
extend your application. A New-
ton device is portable, and it’s
good for gathering data. It’s not a
computer, but it complements
one nicely. For more ideas in this
vein, see my Strategy Mosaic
articles on Newton in the Septem-
ber and October 1993 issues of
Apple Directions. (They’re also
available on AppleLink and the
March 1994 Developer CD.)

Real Soon Now
In the rest of this article, I’ll be
talking about matters of interest to
programmers. If that’s not your cup
of tea, feel free to skip to the end.

By the time you read this, New-
ton Toolkit 1.0.1 should be avail-
able through APDA (U.S.: 800-282-
2732, Canada: 800-637-0029;
international: 716-871-6555). All
registered owners of previous
versions of the Newton Toolkit will
be sent the final version free. Six
months of intense use by develop-
ers has resulted in a faster, more
stable version that has several very
useful new features. Also, Newton
Toolkit 1.0.1 ships with new,
expanded documentation that
folds the contents of many of the
Q&A supplemental documents
into the main documentation.

Also due Real Soon Now
(some may already be out) are
technical documents on using
Newton devices to control
devices remotely through
infrared, multiple alarms (the
Newton currently handles only
one alarm), and optimizing your
NewtonScript programs. They will
be posted to AppleLink as Q&A
documents, in the Newton sup-
port section that registered New-
ton Toolkit owners have access to.

Important
Future Directions
I don’t have any details about the
feature sets of future Newton
models, but several PIE engineers
told me some of the things
they’re working on.

At last December’s Newton
Platform Development Confer-
ence, PIE engineers showed an
experimental Newton system
running compiled NewtonScript
code. They recently said that this
technology is “on track” but
warned that a NewtonScript com-
piler is not a cure-all for sluggish
NewtonScript code. Instead, they
said, you can get better perfor-
mance, today, by writing more
efficient NewtonScript code. (The
upcoming Q&A on that subject
should help you out.)

The PIE engineers are looking
at improving overall performance
in two other ways. The first is by
speeding up the Newton Toolbox
and view system. A second is by
improving the NewtonScript
language interpreter. The engi-
neers want you to know that
they’re working on improving the
Newton platform based on devel-
oper and user feedback and that
they’ve already implemented
numerous improvements in the
System Software 1.05 upgrade
and the Newton MessagePad 100
and 110. This includes speed
increases in application loading
time, the view system, and the
NewtonScript interpreter.

Just to make his point, Andy
Stadler, a PIE engineer, used the
Fodor’s ’94 Travel Manager to
look up directions to a restaurant.
Compared to a Newton Message-
Pad running system software
version 1.04, he said, a Newton
MessagePad 110 made the lookup
approximately 30 percent faster.

Programming and
Testing Notes
Here are some miscellaneous
notes that you should know
about:

• Before you release your
Newton application, you should
make sure it behaves itself if it’s
running from a PCMCIA card. In
particular, the user should be
able to remove the card without
M A Y
getting either the dreaded “New-
ton still needs the card you
removed” message or a –10401
error. Michael Engber of PIE
Developer Technical Support has
written an article entitled “New-
ton Still Needs the Card You
Removed,” which was to appear
in the February 1994 issue of
Double-Tap magazine. Draft 5 of
this article is also on the May 1994
Developer CD, pathname—Sam-
ple Code:Newton sample code
1.0:Errors:ART-NewtonStillNeeds-
TheCard.

• Another very helpful article
by Michael Engber is “Tales From
the View System.” It was pub-
lished in the November 1993
issue of PIE Developers and is
also on the May 1994 Developer
CD, pathname—Sample
Code:Newton sample code
1.0:Views:ART TalesFromThe-
ViewSystem.

• Don’t assume anything
about the size of a Newton
device’s screen; instead, write
your application to query the
device for its size and adapt your
application’s layout intelligently.
An AppleLink document on this
subject is on the May 1994 Devel-
oper CD, pathname—Sample
Code:Newton sample code
1.0:Views:resize link. PIE engi-
neers say that your application
should have both a minimum and
a maximum size. Don’t simply
configure your application to take
over the entire screen; on some
future Newton devices, this may
make your application look poor-
ly designed.

• The Newton stylus can do
more than just write. As one PIE
engineer put it, “The Newton is a
pen machine, not a handwriting
machine.” Use the interface ele-
ments appropriately. Use pop-up
lists, radio-button clusters, and
gauges when they make sense.
Consider making use of the built-
in gestures: tap, double-tap,
scrub, highlight, caret, and line.
(See the documentation on
viewGestureScript in the Newton
1 9 9 4
Programmer’s Guide for more
details.)

Catching the Big Wave
I’ll reiterate what I said in my
February Strategy Mosaic: “Even if
the Newton platform were frozen
today . . . we’d still have a pretty
interesting market to exploit. . . .
Since the Newton is also a new
market with no companies in
control of a particular niche, the
Newton platform, today, gives any
one or two people with a good
idea and a modest amount of
money a chance at building a
successful business.”

But the Newton platform isn’t
frozen. Already, improved models
(the Newton MessagePad 100 and
110) have come out, and more
Newton-based devices of various
types are on the way from Apple
and other companies. I’ve been
hacking NewtonScript code since
last October, so I know that one
person can create a useful New-
ton application in weeks or even
days, not (as with the Macintosh)
quarters or—gulp!—years.

I’m unabashedly bullish on the
Newton. But I also stress that
going for the big win of being a
leader in an entirely new market
does entail some risk, and if
you’re not comfortable with that,
you should wait and see. But it’s
like surfing—to catch the big
wave, you have to be in place
before it starts. ♣

Editor’s note: My thanks go to the
following people in the PIE divi-
sion for their time and ideas:
Philip Ivanier (manager, PIE
Development Relations Group),
Steve Strong (manager, Develop-
er Information Group), Michael
Brooks, Maurice Sharp, Kent
Sandvik, Bob Ebert, Andy Stadler,
Dave Temkin, Joseph Ansanelli,
and Walter Smith.

8 News
AppleDirections
quarter of calendar 1994. The
rest of this story contains details
about the announcements.

Apple News

Power Macintosh
Tools Announced
continued from page 1
Power Macintosh
Beats Pentium on
Price/Performance
Looking at the Ingram performance results reported in the adjoining
news story together with estimated street prices of similarly configured
models, the Power Macintosh computers emerge with a price/perfor-
mance advantage. In other words, the Power Macintosh computers
cost less than comparable Pentium-based PCs from Compaq and they
have higher performance.

The following price/performance ratios were obtained by combining
Ingram performance results with estimated street prices of each com-
puter configured with 16 MB memory and a 500 MB disk drive.

Computer Price/performance
ratio

Power Macintosh 6100/60 2.28
Power Macintosh 8100/80 1.50
Compaq Deskpro 560 XE 1.05
Compaq Deskpro 566/M 0.93
Power Macintosh
Tools From Apple,
13 Other Vendors
You’ll soon be able to purchase a
wide range of development tools
to help you develop native Power
Macintosh applications. Native
applications can take advantage of
the increased processor speed of
the new computers, which run
two to four times faster than
existing 68040- and 80486-based
systems. The Macintosh on RISC
SDK is currently available from
APDA, which will also carry a
number of other vendors’ tools,
as well. (For APDA ordering infor-
mation, see page 24.)
The new products include
native C and C++ development
environments, a Macintosh imple-
mentation of Smalltalk, and a
variety of tools designed to help
developers make the transition to
the Power Macintosh if they’ve
never developed for the Macin-
tosh platform.

The following companies have
announced Power Macintosh
development tools:

• Apple has been shipping a
prerelease version of its Macin-
tosh on RISC SDK since January.
Now you can purchase a new beta
version of the kit from APDA. If
you purchase the beta kit, you’ll
also receive further interim releas-
es up to and including the final
release. Additionally, the kit will
be included in the next issue of
the APDA product E•T•O—
Essentials, Tools, Objects.

• Absoft Corporation
announced the availability by May
of the Absoft FORTRAN 77 SDK
for Power Macintosh and the
Absoft C/C++ SDK for Power
Macintosh. (For more informa-
tion, contact Absoft Corporation,
M A Y
2781 Bond Street, Rochester Hills,
MI 48309; 313-853-0050.)

• ACI US announced the
immediate availability of Object
Master for Power Macintosh, an
integrated programming environ-
ment for Pascal, C, and C++.
(ACI US, Inc., 20883 Stevens
Creek Boulevard, Cupertino, CA;
408-252-4444.)

• Bowers Development
announced the immediate avail-
ability of its interface builder,
AppMaker, Your Assistant Pro-
grammer for Power Macintosh.
(Bowers Development, 97 Lowell
Road, Concord, MA 01742; 508-
369-8175.)

• Bare-Bones Software
announced the availability by June
of BBEdit for Power Macintosh, a
programmer’s editor. (Bare-Bones
Software, 1 Larkspur Way #4,
Natick, MA 01760; 508-651-3561.)

• AT&T Bell Laboratories
announced the immediate avail-
ability of FlashPort Translation
services for Power Macintosh.
Using binary-to-binary translation
technology, FlashPort translates
existing 680x0 Macintosh applica-
tions into native Power Macintosh
applications. (AT&T Bell Labora-
tories, Cruz Plaza, 943 Holmdel
Road, Holmdel, NJ 07733; 908-
946-1140.)

• Jasik Designs announced
the immediate availability of
the Debugger V2 & MacNosy, a
high-level and low-level debugger
for 680x0 and Power Macintosh
applications. This product pro-
vides tools for code coverage
analysis, incremental linking,
and global disassembly. (Jasik
Designs, 343 Trenton Way,
Menlo Park, CA 94025; 415-322-
1386.)

• Language Systems Corpora-
tion announced the availability by
June of Language Systems FOR-
TRAN/PPC and Language Systems
Pascal. Language Systems FOR-
TRAN/PPC is a FORTRAN compil-
er for native Power Macintosh
applications. Language Systems
Pascal is a Power Macintosh
1 9 9 4
Object Pascal compiler. (Language
Systems Corporation, 100 Carpen-
ter Drive, Sterling, VA 20164; 800-
2LANGSYS.)

• Metrowerks announced the
immediate availability of Code-
Warrior, a native Power Macintosh
development environment for C,
C++, and Pascal. In addition,
CodeWarrior provides PowerPlant,
an object-oriented application
framework. (Metrowerks, 1500
Du College, Suite 300, St. Laurent,
Quebec H4L5G6, Canada; 514-
747-5999.)

• MicroAPL Ltd. announced
the immediate availability of Port-
Asm, a 680x0-to-PowerPC assem-
bly language translator. (MicroAPL
Ltd., West Bank Techno Park,
London SE16LN, United King-
dom; 447-1922-8866.)

• Prograph International
announced the availability in the
third quarter of 1994 of Prograph
CPX for Power Macintosh, an
application development environ-
ment featuring an application
framework and application edi-
tors implemented in a visual,
object-oriented language.

• Quasar Knowledge Systems
announced the availability in the
second quarter of 1994 of Small-
talk Agents for Power Macintosh,
a tool for authoring applications
and agents using Smalltalk.
(Quasar Knowledge Systems, Inc.,
9818 Parkwood Drive, Bethesda,
MD 20814; 301-530-4853.)

• Sierra Software Innovations
announced the availability by June
of Inside Out II, a multi-user
relational database engine for use
with Pascal and C/C++. (Sierra
Software Innovations, 923 Tahoe
Blvd., Suite 102, Incline Village,
NV 89451; 702-832-0300.)

• Symantec, as part of its
announcement of Symantec
C++ 7.0, announced the imme-
diate availability of the Power
Macintosh cross-development kit.
The Power Macintosh cross-devel-
opment kit allows developers to
port their Symantec C++ appli-
cations to the Power Macintosh

News 9
AppleDirections
platform. (Symantec Corporation,
10201 Torre Avenue, Cupertino,
CA 95014; 408-253-9600.)

PowerPC Beats Pentium
At the Power Macintosh introduc-
tion in New York’s Lincoln Center,
Apple Product Marketing Man-
agers Jim Gable and Pierre Cesari-
ni demonstrated that the Power-
PC–based systems performed a
variety of tasks faster than IBM-
compatible PCs using Intel Pen-
tium chips. Independent research
conducted by Ingram Laboratories
recently confirmed that Power
Macintosh computers outperform
the fastest Intel-based personal
computers available today.

Ingram used the same applica-
tions on both Power Macintosh
and Pentium-based Windows
systems, measuring performance
on 24 different tasks, including
loading files, scrolling, spell
checking, and applying filters.
Among the study’s key findings
were the following:

• The 80 MHz Power Macin-
tosh 8100/80 computer beat Com-
paq’s top-of-the-line Deskpro
566/M Pentium-based computer
by 60 percent. In some processor-
intensive tasks the Power Macin-
tosh 8100/80 outperformed the
Compaq by over 300 percent.

• The 60 MHz Power Macin-
tosh 6100/60 computer outper-
formed Pentium-based computers
running at both 60 MHz and 66
MHz. The Power Macintosh 6100
beat Compaq’s Pentium-based
Deskpro 560 XE by over 30 per-
cent. In a number of tasks, the
Power Macintosh 6100/60 was
over 10 times faster than an Intel
80486-based PC.

• Not only was the Power
Macintosh 6100/60 computer
much faster than the Compaq
Deskpro 560 XE on the tasks mea-
sured, but it beats the Compaq
model’s price by more than $1,000.

Combining the results of
Ingram’s tests with estimated
street prices, Power Macintosh
systems currently enjoy a
price/performance advantage
over the Pentium systems used in
the study. In fact, the Power Mac-
intosh 6100/60 delivers more than
twice the price/performance of
the Pentium machines tested. For
price/performance details, see
the text box on page 8.

Faster PowerPC
601 Chip Unveiled
Apple will soon have the opportu-
nity to extend the performance of
Power Macintosh computers even
further. IBM and Motorola, devel-
opers of the PowerPC RISC micro-
processor along with Apple,
recently announced 100 MHz
version of the PowerPC 601 chip.
Not only is the new chip faster
than today’s fastest (80 MHz)
PowerPC 601; it is also about 40
percent smaller—about the size of
a thumbtack. It also uses approxi-
mately half the power of current
PowerPC 601 chips.

Limited quantities of the new
chip will be available by this sum-
mer, with full-scale production
beginning in the fourth quarter.
Apple has not yet announced its
plans to use the chip, although it
is expected to use the full range
of currently announced PowerPC
microprocessors, including the
PowerPC 603, PowerPC 604, and
PowerPC 620, in forthcoming
Macintosh systems. For details
about the PowerPC chip family,
see “PowerPC Processors—What’s
New” on page 33 of the April
issue of Apple Directions.
GeoPort Gains Out-

side Support, Goes

Cross-Platform

Apple plans to open its GeoPort
technology to the PC and telepho-
ny industries. This will make Geo-
Port a cross-platform technology
that will promote the growth of
M A Y
desktop communications and
multimedia across a variety of
computing devices, operating
systems, and both analog and
digital telephone lines. On March
2, 1994, Apple Computer, Inc.,
Aox Inc., and Analog Devices,
Inc., announced their intention to
provide cross-platform, plug-and-
play connectivity between person-
al computers and telephones on
corporate desktops.

“The combination of Aox’s
integration skills and Analog
Devices’ signal processing leader-
ship provide an excellent channel
to the installed base of corporate
PCs,” said Steve Manser, vice
president of Macintosh Desktop
Systems. “We look forward to
working with partners throughout
the PC, telephony, and silicon
industries to take advantage of
this cost-effective way to link our
different products and solutions.”

As a high-speed media commu-
nications interface, GeoPort can
support voice, data, telephone
control, audio, and video over any
analog (POTS) or digital (PBX or
ISDN) telephone lines to any
desktop PC, workstation, or note-
book computer. Apple has been
shipping GeoPort for Macintosh
personal computers since August
1993 and will include the technol-
ogy in future PowerPC proces-
sor–based machines.

In a move to quickly facilitate
GeoPort access throughout the
industry, Aox plans to license
GeoPort from Apple. Once
licensed, Aox will then provide
cross-platform GeoPort designs,
development tools, and certifica-
tion services to PC, PBX, and
integrated circuit manufacturers.

Aox has agreed to make initial
GeoPort implementations avail-
able on digital signal processors
(DSPs) from Analog Devices and
on DSPs for the PowerPC proces-
sor. Subsequent implementations
will support other DSPs and
other host processors such as
the Intel 80x86. These imple-
mentations will also support
1 9 9 4
industry-standard software envi-
ronments, including Microsoft’s
Windows and IBM’s OS/2. Analog
will implement the GeoPort
hardware interface within its line
of codecs (compressor/decom-
pressor chips) and its ADSP-2100
family of DSPs. These integrated
circuits will, in turn, be used
throughout the industry by
sound-card, modem, and PC
manufacturers.

The GeoPort announcements
were made at the Intermedia
Conference, held in San Jose,
California, and at a special exhibi-
tion of information superhigh-
way technologies hosted by Vice
President Al Gore at the White
House.

A major advantage of GeoPort
is its ability to support any tele-
phone line, including digital T1
lines. In addition, GeoPort has
been designed to deliver isochro-
nous, real-time streams of data at
very low cost. This will allow
computer and telephony suppli-
ers to offer such features as

• high-quality, multiple-party
video conferencing over the
PBX

• document sharing with
workgroups for collabora-
tive computing

• fax/modem capability from
any desktop PC, even if it is
connected to a digital line,
without the need for gate-
way services

• integrated telephone dial-
ing, answering, caller ID,
and voice and electronic
messaging services from the
desktop

• high-speed transfer of
images and documents from
scanners, digital cameras,
and notebooks onto the
desktop PC

• connection of high-perfor-
mance V.32bis or V.34
modems to any PC without
a throughput bottleneck at
the serial communications
port

10 News
AppleDirections
Analog Devices predicted that
the cross-platform availability of
GeoPort will open the market for
business audio, sound-card,
fax/modem, and video function-
ality. “The cost of adding the
silicon necessary to support
GeoPort into a PC product will
be insignificant at the systems
level. With the tremendous bene-
fits it will provide, virtually every
desktop PC will be a target for
GeoPort-enabled upgrades,”
predicted John Croteau, director
of computer strategy and plan-
ning at Analog Devices.

New GeoPort-enabled prod-
ucts from PBX and PC manufac-
turers are expected to be intro-
duced in 1994.
Apple Ships Mac-

intosh Quadra 610

DOS Compatible

Computer

DOS/Windows users now have
two ways of running their software
on Macintosh computers. They
can use Power Macintosh comput-
ers running Insignia’s SoftWin-
dows software, which emulates an
Intel 80286 chip at 80386 and
80486 speeds. Their other option
is the Macintosh Quadra 610 DOS
Compatible computer, which
employs both a 25 MHz Motorola
68LC040 and a 25 MHz Intel
80486SX microprocessor.

The Macintosh Quadra 610
DOS Compatible computer
shipped in March in the United
States and selected international
markets, along with a new card
that employs both chips and
upgrades Macintosh Quadra 610
and Macintosh Centris 610 com-
puters to become DOS-compati-
ble. The computer and card are
designed to attract traditional
DOS/Windows users to the
Macintosh platform, broadening
the market for your Macintosh
products.

“By developing the most com-
patible personal computer, Apple
intends to provide users with all of
the advantages of the Macintosh
platform while protecting their
investment in both DOS and Win-
dows-based software,” said Ian
Diery, executive vice president and
general manager of Apple’s per-
sonal computer division.

The Macintosh Quadra 610 DOS
Compatible computer’s dual
processors let users work in Macin-
tosh and DOS environments simul-
taneously. The processors work
independently, allowing users to
run Macintosh and DOS or Win-
dows applications at the same time,
cutting and pasting information
between the two environments.

Announced at the Fall 1993
Comdex, where Byte magazine
awarded it first place in its “Best
New System” contest, the system
has passed Microsoft’s DOS and
Windows hardware compatibility
tests, and it will appear on
Microsoft’s Windows 3.1 Hardware
Compatibility List. The computer
comes preinstalled with MS-DOS
6.2 and ships with Apple’s PC
Exchange software. PC Exchange
lets users manage their DOS and
Windows files in the Macintosh
environment just as they would
Macintosh files, allowing users to
open, copy, rename, delete, and
save documents and folders.

Dual monitor support is
designed to provide customers
with the option of viewing the
Macintosh and DOS environ-
ments at the same time, allowing
the user to add a second display
without purchasing an additional
video card. The Macintosh
Quadra 610 DOS Compatible
computer supports most VGA,
SVGA, and multisync monitors as
well as the Apple 14-inch or 16-
inch Macintosh Color Displays.

The same hard drive runs
Macintosh, DOS, or Windows
applications. Apple also offers an
M A Y
optional internal CD-ROM drive
designed to run Macintosh, DOS,
and Windows CD-ROM discs. In
addition, DOS and Windows
applications print to any Apple or
Macintosh-compatible printer
through a built-in serial port or
optional Ethernet port.

U.S. Apple price for the Macin-
tosh Quadra 610 DOS Compatible
computer, which ships with 8 MB
of memory and a 160 MB hard
disk as well as on-board Ethernet,
is $1579. The DOS Compatibility
Card for Macintosh is available at
the U.S. Apple Price of $399.
1

MAE Expands

Your Market to

UNIX Users

Apple CEO Michael Spindler has
made it clear that Apple Computer,
Inc., will soon license the Macin-
tosh operating system to other
major electronics firms, allowing
your products to run on their
platforms. In the meantime, Apple
will ship a new product designed
to bring the functionality and ease-
of-use of the Macintosh operating
system to users of Sun SPARCsta-
tions and Hewlett-Packard 9000
Series 700 workstations.

The product, called Macintosh
Application Environment (MAE),
will ship in the United States in
late April and worldwide by the
end of May. With MAE, worksta-
tion customers have access to
the benefits of the Macintosh
desktop, including the ability to
run most Macintosh applications.
Its release opens the market of
millions of UNIX® workstation
customers to your Macintosh
products. By working with many
of you, including Aldus, Attain,
Claris, DeltaPoint, Deneba,
Microsoft, Now Software, On
Technology, Quark, and Word-
Perfect, Apple certified that
9 9 4
hundreds of existing applications
will work with MAE.

“The Macintosh Application
Environment demonstrates
Apple’s commitment to making
its unique technologies available
to a wider range of computer
users,” said Morris Taradalsky,
vice president and general manag-
er of Apple Business Systems
(ABS). “For a long time, UNIX
customers have demanded access
to high quality, low-cost produc-
tivity applications—MAE now
satisfies this requirement.”

MAE customers will be able to
use the Macintosh graphical user
interface through the Macintosh
desktop and Finder, which will
appear within a UNIX X window.
Customers will have access to
Macintosh System 7 features such
as aliases, TrueType, Apple events,
Balloon Help, QuickDraw, and 32-
bit addressing.

MAE closely integrates Macin-
tosh and UNIX, allowing customers
to directly manipulate the UNIX file
system from the Macintosh inter-
face, cut and paste both text and
graphics between X Window Sys-
tem™ and Macintosh applications,
and administer UNIX systems
through the Macintosh interface.
The MAE architecture also sup-
ports workstation devices, allowing
access to Macintosh-formatted
floppies and CD-ROM discs from
existing workstation drives.

MAE supports the Network
File System (NFS), which allows
users to access, display, and
manipulate remote and local
Macintosh, PC, and UNIX files.
Apple plans to add support for
AppleTalk to MAE in the future.

MAE runs on Solaris 2.3 or HP-
UX 9.01 or later, and requires an
X11 release 4 or later window
display server. MAE is fully com-
patible with HP’s Visual User
Environment, SunSoft’s OpenWin-
dows, and OSF Motif.

The Macintosh Application
Environment will sell for the U.S.
Apple Price of $549. Pricing outside
the U.S. may vary by country. ♣

Technology 11
AppleDirections

Technology
CD Highlights Inside This Section

Human Interface:
Speed Is an Interface Issue 12
Tool Chest Edition, May 1994

Understanding the Power Macintosh
Architecture, Part Two: A Skeleton
Key to Mixed-Mode Issues 14
I have several changes to tell you about this
month, starting with the one you’ve proba-
bly already noticed: the cover.

We’ve been designing cover art around
our whimsical CD titles, usually parodies of
movie titles, for the last four years or so. We
hope you’ve enjoyed them (or at least not
groaned too loudly when you’ve opened up
your monthly Developer Mailing). The Apple
Computer, Inc., legal department, however,
tells us that this long run has to end. Thus,
our new look. Each edition (Tool Chest,
Reference Library, and System Software) will
have its own visual style and standard name:
this month, we welcome Jeff Gunion, our
artist for the Tool Chest editions.

You’ll notice a few changes inside, as well.
The new Contents Catalog has emerged
from beta to the light of day at the top level
of the CD; improvements over the old cata-
log include better search capabilities and the
ability to open folders and files on the CD
directly from the catalog. Give it a try and let
us know what you think by completing this
month’s survey or by sending your com-
ments to us at either DEV.CD on AppleLink
or dev.cd@applelink.apple.com.

Finally, there have been some organiza-
tional changes. The Sample Code folder has
been moved to this disc from the Reference
Library edition, and there are two new fold-
ers within Tool Chest: Developer Utilities
and Interfaces. Developer Utilities will con-
tain general tools of interest to developers,
such as ResEdit and the AppleLink applica-
tion; new this month is SWAt, the tool we
use to set the window sizes, locations, and
scroll bar positions of the Finder windows on
this disc. The Interfaces folder will provide a
one-stop shopping experience for header
files, including Universal interfaces, MPW
interfaces, and aliases to many other sets of
headers on the disc. If the headers you need
don’t appear on this month’s disc, drop me a
line and we’ll do our best to include them
next quarter.

Here’s some of the new and revised ma-
terial included on this month’s installment in
the monthly Developer CD series.

A/ROSE Version 1.2.1
This folder contains the A/ROSE version
1.2.1 system extension, including associated
interface files and object modules. Also in
the folder is the latest update for the A/ROSE
software, version 1.2.1, required for Apple
Macintosh coprocessor-based NuBus™
cards, such as the Ethernet NB, TokenTalk
NB, and TokenRing 4/16 NB cards running
on Power Macintosh computers. This
release also addresses a compatibility
issue with operations on Power Macintosh
computers.

AE Sample Applications
This folder contains sample applications that
demonstrate how to develop applications
that support Apple events and the object
model.

For example, 7Edit is a recordable, script-
able text editor. It includes sample C and
Pascal code demonstrating how to develop
recordable, scriptable applications using
Apple events, the object model, and Apple-
Script. It also supports the Core and Text
suites of events.

Apple Bug Reporter
Apple Bug Reporter version 1.5 is a Hyper-
Card stack that allows you to report Macin-
tosh software and hardware bugs. This is an
update to Apple Bug Reporter version 1.0b9.
It incorporates many bug fixes and has a
cleaner interface. When you use it to file a
bug report, the stack automatically puts the
report in your AppleLink Out Basket. When
M A Y 1 9 9 4
you next log on to AppleLink, your bug report
is sent to APPLE.BUGS.

Apple Style Guide 2/94
The February 1994 edition of the Apple Publi-
cations Style Guide provides developers the
most up-to-date style conventions Apple uses
in its documentation. Many new terms have
been added to—and obsolete ones deleted
from—this extensive revision. It includes
general rules for style and usage; appendixes
on technical notation, units of measure, writ-
ing help ballons, and creating glossaries; and a
Newton style guide.

AppleGlot 2.1
AppleGlot version 2.1 is a text translation tool
that succeeds AppleGlot versions 2.0 and 1.1.
The new version is batch oriented while 1.1
was single-file oriented. New features include
support for more Resorcerer template field
types, new resource compare logic, and back-
ground processing.

BBEdit Lite 2.3.2
BBEdit Lite 2.3.2 is an evolution of BBEdit 2.2,
the popular freeware text editor.

Note: This is not an Apple product. It is
provided on an “as is” basis. Apple is not
responsible for any problems you may
encounter in its use.

Convert•Projects 1.0b2
Convert•Projects is a utility that will read a
Think C or Think Pascal project and produce
an equivalent (or near-equivalent) Code War-
rior project. This is particularly useful for large

please turn to page 19

12 Technology
AppleDirections

Human Interface
By Pete Bickford

Speed Is an Interface Issue

Many surveys have tried to determine what it is about a computer
that makes its users happy. Time and time again, it turns out that
the biggest factor in user satisfaction is not the computer’s reliabili-
ty, its compatibility with other platforms, the type of user interface
it has, or even its price. What customers seem to want most is
speed. When it comes to computers, users hate waiting more than
they like anything else.

Having just revealed this startling fact, I can vividly imagine some-
one in the reading audience exclaiming, “That’s great, Doc, but
speed’s a hardware thing. We don’t design the machines, so there’s
not a lot we can do about it!” But a good software designer probably
exercises more control over how fast a program executes than any
hardware engineer. Even better, a good human interface designer
can perform magic that makes a program feel like it’s running much
faster—even if its execution speed hasn’t changed at all!

Real Speed and Perceived Speed
Computers actually have two types of speed: the benchmarkable
real (machine) speed and the user’s idea of how fast a machine is
going, or its perceived speed. Of these two, the one that really
matters is perceived speed. For instance, a 3-D rendering program
that saves a few ticks by not displaying the results until the image is
complete will inevitably be seen as slower than a program that lets
the user watch the image as it develops. The reason is that while
the latter program’s users are watching an image form, the first
program’s users are staring impatiently at the clock noticing every
long second tick by. Users will say that the first program ran slower
simply because the wait was more painful.

If we want happy users, we need to maximize our programs’
perceived speed. We can accomplish this task in three ways:

• by maximizing the real (machine) speed
• by doing the visible work first
• by “faking out” the user

These methods are not mutually exclusive—in fact, the best
applications do all three.

Maximizing Real Speed
If you want to live like a millionaire, the easiest and most direct way
is to start by getting yourself a million dollars. If you want your
program to seem like it’s running fast, the most obvious thing to do
is to actually make it run fast. That is, maximize its real speed.

The good news is that the hardware folks keep finding ways to
effectively double the processing power of our machines every
couple of years, while keeping the price about the same. The Power
M A Y
Macintosh computer (which you’ve no doubt heard so much about
recently) promises to accelerate this trend. The net effect of all this
is that the available installed base is getting faster all the time with-
out you having to do anything.

On the other hand, there’s never been a machine so fast that the
software folks couldn’t think of some new technology to run that
slows it right down again. The original Macintosh computer was a
powerhouse for its time as far as hardware goes, but the demands
of a WYSIWYG interface sometimes made it seem pokey when
compared to character-based DOS systems.

Macintosh II users rejoiced at a computer that effectively ran at
four times the speed of the Macintosh Plus, and then willingly gave up
much of the potential speed increase to run in color. As machines
continued to get more powerful, users added 24-bit video, file sharing,
sound input and output, desktop movies, and so on. There’s no real
end to this trend in sight—nor is it a Macintosh-only phenomenon.
Many have been the cries of PC power users whose clock-doubled
monster towers were humbled by the demands of Windows.

In some cases, you can require that your software be run only on
computers that possess a certain level of machine speed. Unfortu-
nately, every machine you exclude in this manner means one less
potential sale. Worse, some markets, such as education, are full of
“hand-me-down” computers and upgrade much less rapidly than
other markets. Requiring a fast processor or a floating-point unit in
your software may banish you from these markets entirely. Heavy
hardware requirements are generally bad karma unless you’re sell-
ing into a very specialized or vertical market.

A better way to get machine speed is to carefully engineer your
software’s underlying algorithms. While hardware improvements
can often double your execution speed, improvements in the way
you access and manipulate program data can often speed your
application by whole orders of magnitude.

One problem, in addition to all the technical challenges involved
in this, is that programmers have to conquer the 2 A.M. urge to write
“good enough” algorithms that only seem to run acceptably
because they’re being developed on the fastest systems available.
When the same software is run on an average user’s machine, all
those “good enough” routines move as fast as a VW Bug trying to
climb Mount Shasta. There’s a school of thought that says program-
mers should be forced to work on the least-configured systems in
their target market, instead of the high-end workstations they tend
to use. While this seems a bit like cruel and unusual punishment to
me, I’ve seen programmers who usually work with Macintosh
Quadra 950 computers rewrite routines to work 20 times as fast
when they were forced to run their own applications on a Power-
Book 140 computer.
1 9 9 4

Technology 13
AppleDirections
Do Visible Work First
The next challenge is to put your program’s speed into the areas
where it does the most good. In most cases, this means responding
quickly to user input, bringing back initial results rapidly, and shift-
ing as much work as possible to times when the user is busy doing
something else.

Whenever you have a choice, do the work users can see first,
then complete the rest while users are busy absorbing what they
see onscreen. For instance, if your program has to get 10,000 rows
of data from a mainframe, do everything in your power to bring
back the first 40 rows of data and display them right away. Then,
while users are looking over this data, you’ll have time to start get-
ting the other 9,960 rows. At the very least, you’ll have provided
users with reading material to help pass the time.

The converse of “Do visible work first” is that you can give invisi-
ble work low priority. A great example is the way file sharing starts
up in System 7. On a large system, file sharing may take several
minutes to scan the various disks and directories as part of its start-
up process. The developers wisely made this a background process
with a fairly small pull on the system’s capacity. As a result, the user
is able to get useful work done while file sharing completes its scan
during the moments when the user is busy. No doubt file sharing
could start up much more quickly if it took all the CPU priority and
made the user stand by until it was finished. However, the real
result of that would likely have been legions of unhappy users who
would have preferred to disable file sharing rather than tolerate the
delay.

Faking Out the User
All of the above is about preventing users from feeling like they’re
waiting. Waiting, as they say, is a Bad Thing. Luckily, researchers
have recently made a major breakthrough in waiting science that
has important implications for software design.

Glasnost has given the world access to the huge body of research
from scientists in the former Soviet Union on the subject of waiting in
lines. As it turns out, there are actually two distinct types of lines. A
type 1 line typically stretches out of sight and hasn’t moved since
dawn. When the waiting customers arrive at the front of the line, they
usually find bureaucrats providing halfhearted service while looking
like they have better things to do. (Although the research here is
based on toilet paper lines in the Soviet Union, a similar type of line-
waiting culture can be observed at the San Jose Department of Motor
Vehicles). Long-time residents of such lines are given to fits of resent-
ment, depression, and sudden homicidal rage.

A type 2 line is marked by steady, incremental movement with
diligent work on the part of the staff working at the front of the line.
It turns out that if people suspect that they are in a type 2 line, they
experience much less anxiety. Indeed, if the object at the end of the
line is highly desirable (such as tickets to a Pink Floyd concert), they
may even sense a sort of giddy anticipation.
M A Y
If you must make users wait, it’s important to give them the
impression that they are waiting in a type 2 line. The keys are that
users must know how long the wait is, see steady progress, and get
the feeling that the system is working as hard as possible to make
their wait short.

The chief tools we have for doing this on the Macintosh are the
“busy” cursor and the progress bar. Busy cursors can say to the user,
“I know you’re there, your problem is important to me, and I’m
devoting all my energies to your problem.” The “I know you’re
there” part is especially important, since computers (and shop
clerks) who just seem to “go away” without any warning while the
user is waiting tend to find their reset buttons punched.

An animated busy cursor, such as a beach ball, can be especially
effective in keeping users pacified. The trick is that for each turn of
the cursor, users will infer that the computer did a certain amount
of work. Thus, if you want to convince users that you’re working
very hard on their problem, spin the cursor a lot. As long as you
don’t go too crazy with this, you’ll give users the impression that
long waits must mean “I sure gave the system a lot of work to do”
rather than “Gosh, that system is slow!”

There are two caveats here: First, don’t make the animation look
so involved that users begins to suspect you’re wasting their time
morphing icons rather than working on the real problem; and sec-
ond, make sure that cursor movement is fairly steady. Since users
will infer that the turn of a cursor means work is being done, non-
spinning is taken to mean that the computer is doing something
else (although in reality, exactly the opposite is usually the case).

Finally, progress bars are essential for any wait of 20 seconds or
longer. A progress bar tells users where they stand, shows concrete
movement, and gives them an indication of how long they have to
wait. Remember, users who can see steady progress while waiting
for an hour generally report less anxiety than users who have to
wait with no feedback for fifty minutes.

Till next time,
Doc

AppleLink: THE.DOKTOR

Author’s note: I’d like to thank Bill Fernandez and Bruce Tognazz-
ini for many of the ideas on which this article is based; also “Dr.
Bob” Glass, whom I first heard proclaim, “Speed is an interface
issue.”

Pete Bickford is a member of the Apple Business Systems human
interface team.
1 9 9 4

14 Technology
AppleDirections
Understanding the Power Macintosh
Architecture, Part Two: A Skeleton Key
to Mixed-Mode Issues

By Gregg Williams
Apple Directions staff

Learning to program in a new
environment is often difficult
because you’re faced with the gap
between “what” and “how”—
you’re given a large body of infor-
mation in the form of documenta-
tion (the “what”) and you have to
translate that information into a
plan for getting your task accom-
plished (the “how”). Often, a
programmer’s first steps involve a
lot of trial-and-error programming,
which is both costly and ineffi-
cient. The more “how” informa-
tion you have, the more produc-
tive you’re going to be. But there
are two flavors of “how,” and you
will be the most productive when
you know both how to get your
task accomplished and how the
underlying technology works.

Last month, I gave an overview
of the Power Macintosh architec-
ture, which will be sufficient for
many readers. However, if you’re
going to be programming Power
Macintosh computers or managing
people who will be doing so (or if,
like me, you’re just fascinated by
technology), you’ll probably benefit
from reading this article. The defini-
tive word on how Power Macintosh
software works is still Inside Macin-
tosh: PowerPC System Software,
and you should go there for details
beyond the ones I give in this arti-
cle. (That document is on the April
1994 Developer CD and is also
available through APDA. See the
first part of this article, in the April
1994 issue of Apple Directions, for
more details.)

Be warned: This article is
very technical. You may not be
interested in the technical details.
Even if you are, you will probably
not understand everything on the
first or even subsequent readings;
believe me, I didn’t.

The Implications of
Mixed-Mode Software
In the past ten years, developers
have written millions of lines of
code for 680x0 Macintosh comput-
ers. Apple’s commitment to back-
ward compatibility dictated that the
Power Macintosh computer run
yesterday’s, today’s, and tomor-
row’s 680x0 Macintosh software.
And it does, through its 68LC040
Emulator software, which allows
the PowerPC processor to execute
Motorola 68LC040 instructions.

For various technical and com-
patibility reasons, parts of Macin-
tosh system software remain in
680x0 code, while others are in
PowerPC code. This means that
every Power Macintosh computer
is switching, as needed, between
executing 680x0 and PowerPC
code. Consider some of the diffi-
culties this presents:

• Existing 680x0 software has
to run correctly without modifica-
tion, even though some of the
system software routines it calls are
implemented in PowerPC code.

• The 680x0 and PowerPC
processors pass arguments to
routines in different ways; the
Power Macintosh architecture
must somehow accommodate
these differences.

• System software routines
currently implemented as 680x0
code may, in later Power Macin-
tosh system software, be convert-
ed to PowerPC code. Both exist-
ing and new Macintosh software
M A Y
must always run correctly, even if
the implementations of some
system software routines change.

A new manager in system
software, the Mixed Mode Manag-
er, handles all this, with amazing
success. Because of it and other
parts of Power Macintosh system
software, you can continue—in
large part—to create Macintosh
programs like you always have.

However, in a few situations
you must program differently (or,
if you’re porting existing code,
you must change your source
code). To know what code needs
to be changed, you must first
understand how the Mixed Mode
Manager handles switching
between the 680x0 and PowerPC
instruction sets.

Mixing Modes
When your program (either 680x0
or PowerPC code) calls a system
software routine (in either 680x0
or PowerPC code), four possible
combinations exist (as shown in
“Execution of mixed-mode code”
on page 15). Let’s see how the
Power Macintosh architecture
handles each of them.

The easiest case is 680x0
code calling a 680x0 system
software routine: The 68LC040
Emulator stays in control and
emulates the trap dispatch
mechanism you’re already famil-
iar with—that way, existing
680x0 code runs without modifi-
cation. (For the purposes of this
explanation, you can say that
when a system software routine
executes, it encounters a special
A-line trap instruction that looks
up the address of its code in a
table called the trap dispatch
1 9 9 4
table and begins executing the
code at that address.)

The second case occurs when
PowerPC code calls a system
software routine that is imple-
mented in 680x0 code. The Pow-
erPC compiler/linker takes the
source code and ties it to “glue”
code (provided by Apple) that
exists in a shared library. When
executed, this glue code

• takes care of various house-
keeping details

• determines the address of
the 680x0 routine

• switches mode by executing
the routine using CallUni-
versalProc (which I’ll discuss
later)

This may not mean much to
you now, but the important thing
to remember is that you write the
same line of source code as you
did for 680x0 Macintosh comput-
ers, and the Power Macintosh
architecture and compiler “do the
right thing.” This glue code
involves the Mixed Mode Manag-
er, which executes the 680x0
routine (using the 68LC040 Emu-
lator) and then allows the Power-
PC processor to continue execut-
ing PowerPC instructions.

Enter the Routine
Descriptor, Stage Left
The third case, 680x0 code calling
a system software routine imple-
mented in PowerPC code, is
where things get really interest-
ing. To describe this, I first need
to explain the existence of a
much-misunderstood part of the
Power Macintosh software archi-
tecture, the routine descriptor.

Technology 15
AppleDirections
Given that 680x0 code had to
run without modification, the
Power Macintosh engineers had
to decide what to do with a sys-
tem software routine written in
PowerPC code. After all, they
couldn’t just let the 68LC040
Emulator plow through it, trying
to execute it as if it were 680x0
code. They decided that, since no
base of existing Power Macintosh
code forced any compatibility
limitations, they had a bit more
slack in deciding how to solve this
problem. Once they defined how
Power Macintosh code must be
written, everyone would have to
follow their guidelines.

The answer that the Power
Macintosh engineers came up
with was to give certain routines
an associated data structure called
a routine descriptor, which gives
the Mixed Mode Manager the
information it needs to work with
this routine (including a pointer
to the actual routine). The begin-
ning of the routine descriptor
data structure is actually an A-line
trap instruction. When the
68LC040 Emulator encounters
this trap, it passes execution to
the Mixed Mode Manager. The
Mixed Mode Manager switches to
PowerPC mode, lets the PowerPC
routine execute, then returns
control to the 68LC040 Emulator.
With this solution, the value that
needs to be in the trap dispatch
table is not the routine’s address
but the address of its routine
descriptor.

Enter the Universal Proce-
dure Pointer, Stage Right
This sets the stage for the fourth
and final code-calling/routine-
called combination: PowerPC
code calling a system software
routine written in PowerPC code.
You’d think this case would be as
simple as that of 680x0 code
calling a 680x0 system software
routine. But nooooo. . . .

To accommodate the case of
680x0 code calling a system soft-
ware routine written in PowerPC
code, the Power Macintosh engi-
neers had to put the address of
the routine descriptor into the
trap dispatch table. But guess
what? In this last case (PowerPC/
PowerPC), the PowerPC proces-
sor can’t directly execute the
routine descriptor.

This case is resolved in the
same way as was the second case,
described earlier. The PowerPC
compiler/linker takes the source
code and ties it to the same
“glue” code that was described
earlier. (This code is “smart” and
knows what to do in each situa-
tion.) In this case, the glue code
calls CallUniversalProc, which
looks at the routine descriptor,
sees that the code is PowerPC
code, and calls it directly. Whew!

Okay, that’s what actually
happens. Now it’s time to add
one final detail, one that doesn’t
change anything I’ve just
described but simplifies how you
think about PowerPC software.
(I’m told that many Power Macin-
tosh developers have had trouble
with this concept—I know I did—
so understanding it now will save
you a lot of grief later.)

Apple engineers named the
values that are stored in the trap
Code
making
call

PowerPC 680x0 PowerPC

System
software
routine
being
called

680x0

680x0 680x0 PowerPCPowerPC

PowerPC processor running
68LC040 Emulator

PowerPC processor
executing directly

Mixed Mode Manager

Execution of mixed-mode code. In three cases out of four, the Mixed Mode Manager is involved
when code from your program calls a system software routine in a Power Macintosh computer.
M A Y
dispatch table universal proce-
dure pointers, or UPPs. In gener-
al, when writing source code for
Power Macintosh computers, you
will use universal procedure
pointers, not procedure point-
ers—and this fact is part of an
overall design that minimizes the
number of places you have to
write code differently from
pre–Power Macintosh days.

Read the next two sentences
until you understand them (or
until you have them memorized,
whichever comes first). If a rou-
tine is written in 680x0 code, its
universal procedure pointer is a
pointer to 680x0 code—that is, a
pointer to the beginning of the
routine. If a routine is written in
PowerPC code, its universal proce-
dure pointer is a pointer not to the
beginning of the routine but to its
routine descriptor. (The figure
“Universal procedure pointers” on
page 17 illustrates this concept. As
it turns out, a PowerPC routine
descriptor points to something
called a transition vector, which in
turn points to the PowerPC code.
For more information on the tran-
sition vector, see Inside Macintosh:
PowerPC System Software, pages 1-
26 and 2-5.)
1 9 9 4
Aside from being interesting in
their own right, the explanations
in this section introduce two key
concepts, the routine descriptor
and the universal procedure
pointer. You need to understand
both of these before you can
answer the question “How do I
know what code needs to be
written differently for Power Mac-
intosh computers?”

Dealing With
External Code
If you were writing either 680x0
code that calls only 680x0 code or
PowerPC code that calls only
PowerPC code, you’d never have
to worry about routine descrip-
tors or universal procedure point-
ers. However, there are several
situations in which your code
must call external code—that is,
code that is not directly contained
in the code you are writing:

• You call a trap.
• You call a device driver.
• You use the address of a

routine, but you don’t know
the instruction set of rou-
tine’s code.

• You load and execute code
from a resource.

16 Technology
AppleDirections
Power Macintosh system soft-
ware takes care of the first two
cases automatically. In the last
two cases, you’ll probably have to
write your code differently from
before, and that’s what the rest of
this article is about.

Passing Procedure
Pointers
You can’t write a Macintosh pro-
gram from scratch without pass-
ing procedure pointers (that is,
specifying a procedure by its
address, then letting some other
software routine call it using that
address). Procedure pointers are
used in several contexts:

• A handful of system calls use
procedure pointers: for example,
ModalDialog (which handles
events when you display a modal
dialog box) and TrackControl
(which responds to mouse move-
ment when the user has clicked a
control).

• The fields of some records
use them: for example, the con-
trlAction field of a ControlRecord
(a record that is associated with a
button, checkbox, scroll bar, or
other control).

• Some system global vari-
ables use them: for example,
MBarHook (a routine that is
called repeatedly while the mouse
button is held down over a
menu).

You need to be concerned
about passing procedure pointers
in two cases. The first occurs
when you write source code that
will be compiled to native Power-
PC code. The second occurs
when you write source code that
will be compiled to 680x0 code.

Wait a minute! Didn’t I say
earlier that you should write pro-
grams the same as always if they’re
going to be compiled to 680x0
code? Strictly speaking, that’s true.
But Apple encourages you to
write your source code as
described in the sections that
follow. It’s not that much extra
work, and doing so brings you
considerably closer to having one
source-code file that you can com-
pile to run on either the 680x0 or
PowerPC processor. Depending on
your situation, making your source
code “friendly” to both compilers
may result in a larger market for
your program.

Universal Header Files
and ProcInfo Values
Like the pre–Power Macintosh
header files, universal header files
contain information about the
Macintosh architecture that must
be present when you compile your
source code. Universal header
files, however, contain additional
information that allows you to use
them regardless of whether you’re
compiling your software to 680x0
or PowerPC code.

You must use the universal
header files if you are compiling
to PowerPC code. You should
also use them for existing 680x0-
based software; doing so puts
you one step closer to having
source code you can compile to
either processor. (See page 25 of
develop issue 16 [December
1993] for details on how univer-
sal header files, also called uni-
versal interface files, differ from
their predecessors.)

Before you can create a univer-
sal procedure pointer or call the
routine it points to, you need to
construct the routine’s procInfo
(short for procedure informa-
tion) value. The main reason for
the procInfo value is that the
PowerPC processor passes para-
meters in one way, but 680x0
routines pass parameters in no
fewer than five different ways (not
including additional special
cases). The procInfo value
encodes essential information
about a routine’s calling conven-
tions (and other characteristics).
The Mixed Mode Manager uses
this value to translate the passed
parameters between the 680x0
and PowerPC architectures when
a mixed-mode call occurs.

When you use the universal
header files, you must change
M A Y
existing source code to use uni-
versal procedure pointers instead
of procedure pointers. (The same
is true if you’re writing new
source code.) The universal head-
er files contain conditional state-
ments that do different things
based on whether you’re compil-
ing for the 680x0 or the PowerPC
processor. For the former, these
statements rewrite your source
code to be the source code you
would have written for a
pre–Power Macintosh program.
For the latter, these statements
calculate the procInfo value for
you and hide the mechanics of
creating a universal procedure
pointer and calling the routine
from it. For the knock-down,
drag-out details of exactly what
happens see the file “Inside the
Univ Hdr Files,” located on
AppleLink, pathname Developer
Support:Developer Services:Peri-
odicals:Apple Directions:Apple
Directions May 1994.

(Note: The previous paragraph
pertains to source code written in
C or C++. You may have to
code differently if you are writing
PowerPC code in Pascal, FOR-
TRAN, or some other language.)

Learning by Example
Let’s look at an example of what
you need to do to change a sys-
tem software call that passes a
procedure as one of its parame-
ters. I’ll use the system software
routine ModalDialog, one para-
meter of which is a pointer to a
procedure (call it myFilterProc)
that handles certain events that
occur while the modal dialog box
is visible.

In existing, pre–Power Macin-
tosh C code, you’d call this rou-
tine as follows:

ModalDialog

(myFilterProc, &itemHit);

To change this code to use a
universal procedure pointer
instead of the procedure pointer
myFilterProc, here’s what you do:
1 9 9 4
• Look in the Dialogs.h uni-
versal header file.

• Find the definition for
ModalDialog; you’ll find that
it expects a parameter of
type ModalFilterUPP. (The
letters UPP remind you this
data type represents a uni-
versal procedure pointer.)

• Find the macro that defines
a new modal filter universal
procedure pointer—in this
case, it’s called NewModal-
FilterProc.

• Add a line of code that uses
NewModalFilterProc to
convert myFilterProc to a
universal procedure pointer.

• Finally, in the existing call to
ModalDialog, substitute the
new universal procedure
pointer for the original
procedure pointer,
myFilterProc.

Your final code, which will
compile correctly for both the
680x0 and PowerPC processors,
will look like this:

MyFilterProcUPP =

NewModalFilterProc

(myFilterProc);

ModalDialog

(MyFilterProcUPP,

&itemHit);

The above code creates a
routine descriptor, which takes up
a non-relocatable block in the
current heap. Since your applica-
tion may create a lot of routine
descriptors, you may want to
dispose of them immediately. To
do this, you’d add another line of
code to the above code:

DisposeRoutineDescrip-

tor(MyFilterProcUPP);

Pages 2-21 and 2-22 of
Inside Macintosh: PowerPC
System Software describe this
and an alternate way of dealing
with deallocating routine
descriptors.

Technology 17
AppleDirections
In a similar vein, you can call
the modal-dialog filter procedure
itself by using another macro
defined in Dialogs.h, CallModalFil-
terPointer, passing it MyFilter-
ProcUPP. See the Dialogs.h file for
details.

Converting Your Source
Code to Universal Proce-
dure Pointers
To generalize the above steps,
here’s how you change any system
software call that passes a proce-
dure pointer as a parameter:

• In the universal header file
for the system software
routine, find the correspond-
ing new routine that changes
the procedure pointer to a
universal procedure pointer.

• In your code, use this rou-
tine to convert your proce-
dure pointer to the appropri-
ate universal procedure
pointer.

• Call the system software
routine using the universal
procedure pointer you’ve
just created (instead of the
procedure pointer).

One of the things the universal
header files do for you is to define
the procInfo values for proce-
dures whose parameters are
known to Macintosh system soft-
ware (in the example earlier, the
modal-dialog filter procedure).

However, if you write a rou-
tine that passes a procedure that
Macintosh system software
doesn’t know about, you must
construct the procInfo value for
the procedure yourself. (For
details, see page 2-14, “Specify-
ing Procedure Information,” in
Inside Macintosh: PowerPC
System Software.) You then use
this value when you create the
procedure’s universal procedure
pointer (using the procedure
NewRoutineDescriptor) and
when you call the routine (using
CallUniversalProc). To streamline
this process, you may want to
duplicate the functionality of the
glue code in the universal head-
er files that takes care of such
details for you.

Executing Code From
Resources
The second situation where you
may have to change existing
source code (or write new code
differently) occurs when you load
object code into memory from a
resource and then execute it.
Fortunately, because I’ve already
covered most of the concepts you
need to understand, this section is
easier to explain.

You have to look at the situa-
tion of executing code from
resources from two different
points of view: what you need to
do if you’re creating the resource,
and what you need to do if your
program is calling a resource.
Source code for a
Macintosh program

Trap
dispatch
table

ATrapInPowerPC ()

ATrapInPowerPC ()

MIXD
lgaz
ieak
brfc
rbwi
eisl
glin

Routine
descriptor

sorn
dkls
fasl
dfjj
lasd
asjf
sela

680x0
routine

dklw
flei

Transition
vector

jlsf
jien
fnve
wnue
sjfu
yeun
bvsd

PowerPC
routine

Power Macintosh system software
Universal procedure
pointers

Normal pointers

Universal procedure pointers. In Power Macintosh computers, universal procedure pointers
(UPPs) replace the procedure pointers used in 680x0 Macintosh computers whenever use of the
pointer might require a mode switch. A UPP for a PowerPC routine points to its routine descrip-
tor (see text for details), but a UPP for a 680x0 routine is exactly the same procedure pointer as
it would be in a 680x0 Macintosh computer. The shading indicates that the beginning of the
routine descriptor is an A-line trap instruction that, when executed, transfers control to the
Mixeed Mode Manager.
M A Y
Private and Accelerated
Resources
If you’re creating a resource that
contains 680x0 code, you do it as
you normally would. As I said
earlier, existing 680x0 code—
including code in resources—must
continue to work as is.

Resources containing PowerPC
code divide into two categories:
private resources and accelerated
resources. Private resources con-
tain code that is used by your
PowerPC program only. Because
the conditions under which the
code will be executed are known
and because you have PowerPC
code calling more PowerPC code,
you don’t need a routine descrip-
tor, and calling this code doesn’t
involve the Mixed Mode Manager.
Your program can simply load the
resource into memory, use the
Code Fragment Manager to pre-
pare the fragment for execution,
1 9 9 4
and execute it directly. However,
Apple discourages the use of
private resources; one reason is
that they are not handled by file
mapping (see last month’s article
for details) and so decrease the
effectiveness of Power Macintosh
virtual memory.

Accelerated resources are a
different matter. An accelerated
resource is any resource containing
PowerPC code that has a single
entry point and mirrors the behav-
ior of a 680x0 resource. The great
thing about an accelerated resource
is that you can substitute one for its
680x0 equivalent, and existing code
that uses that resource continues to
work without modification. In
some situations, replacing a 680x0
resource with an accelerated
resource is a good way of speeding
up existing software. Resources
that you might consider accelerat-
ing include HyperCard XCMD

18 Technology
AppleDirections
extensions and menu, control,
window, and list definition proce-
dures (which are stored in 'MDEF',
'CDEF', 'WDEF', and 'LDEF'
resources, respectively).

However, accelerated
resources, like private resources,
are also not handled by file map-
ping. Because of this, you may
want to package your routine as a
PowerPC shared library, either
appended to the application’s data
fork or placed in another file. In
this way, your routine will benefit
from file mapping.

Creating and Calling
Resources
With the exception of private
resources (which don’t need
routine descriptors), here are the
rules to follow when you create
executable resources (see also the
table “Executing code from a
resource,” on this page):

• For 680x0 resources, create
them as you normally would in
the 680x0 world.

• For PowerPC resources, add
a routine descriptor to the head
of the resource. (To do this, use
the Rez resource compiler utility
and templates found in the Mixed-
Mode.r file.)

When you write code that
loads a resource into memory and
calls it, you should follow the
following rules:

• For 680x0 code calling a
resource, you load the resource
into memory and call it the way
you always have.

If the routine called is 680x0
code, the 68LC040 Emulator
jumps to the beginning of the
routine and starts executing it as
680x0 code. If the routine called
is PowerPC code, the 68LC040
Emulator jumps to the beginning
of it (which is a routine descrip-
tor) and executes the A-line
instruction that hands control
over to the Mixed Mode Manager.
The Mixed Mode Manager calls
the Code Fragment Manager to
prepare the code fragment for
execution. Then the Mixed Mode
Manager handles the execution
of the PowerPC routine and
returns control to the 68LC040
Emulator.

• For PowerPC code calling a
resource, you must load the
resource into memory and then
call it with the routine CallUni-
versalProc. Note that CallUniver-
salProc requires a universal proce-
dure pointer and its corresponding
procInfo value. (As stated before,
this excludes private resources,
which need no universal proce-
dure pointer.)

If the routine called is 680x0
code, CallUniversalProc invokes
the Mixed Mode Manager, which
causes the 68LC040 Emulator to
execute the 680x0 code and then
returns control to the PowerPC
processor. If the routine called is
PowerPC code, CallUniversalProc
causes the Mixed Mode Manager
to call the Code Fragment Manag-
er (to prepare the fragment and
return the entry point) and then
to allow the PowerPC processor to
begin executing the routine at its
entry point.
Executing code from a resource. Often, you want to put executable code in a resource, then
load it into memory and execute it. This table tells you how to create the resource and how to
call it in the mixed instruction-set environment of Power Macintosh computers.

When writing a resource...

When writing the calling
code...

...in 680x0 code

Code as you normally would for
680x0 Macintosh computers

Load it into memory using
GetResource, then call the rou-
tine as you normally would for
680x0 Macintosh computers

...in PowerPC code

Add a routine descriptor to the
resource

Load it into memory using
GetResource, then call the rou-
tine using CallUniversalProc
(accelerated resources only)
Conclusions
Sometimes you have to know a lot
to know what doesn’t need doing.
I think that’s the case here; you
have to know a lot about what
goes on inside Power Macintosh
computers before you can under-
M A Y
stand why there’s not that much
you need to do differently. Again,
let me reemphasize that Inside
Macintosh: PowerPC System
Software is the one document
that whoever’s doing the pro-
gramming needs to read and
know thoroughly.

If you’re making the decisions
about porting existing code,
writing new native (PowerPC
processor–based) applications,
or creating one set of source
code that you can use to create
both 680x0-based and PowerPC
processor–based applications, all
you need to know is that writing
code for the PowerPC processor
isn’t all that different from what
you (or your programmers) have
been doing all along. Program-
mers’ current skills aren’t obso-
lete, and they don’t need major
retraining to make the transition
to the PowerPC world.

Experience bears this conclu-
sion out. Early PowerPC develop-
ers, who were working with pre-
release development tools and
minimal documentation, report
that they took anywhere from a
few days to a few weeks to con-
vert existing C programs to run on
Power Macintosh computers. One
rule of thumb that I heard is to
consider the conversion of an
application to PowerPC to be
roughly equivalent to a “0.5”
1 9 9 4
revision—for example, from Sur-
fWriter 2.0 to SurfWriter 2.5.

If you’re developing from
scratch, a native Power Macintosh
application shouldn’t be any hard-
er to write than a traditional Mac-
intosh application. In fact, numer-
ous Power Macintosh features—
like import libraries and global
variables for non-application code
fragments—make programming
easier and should partially offset
any other overhead that program-
ming for Power Macintosh might
add.

Of course, porting existing
applications to Power Macintosh
computers just keeps your foot in
the door. People will be buying
Power Macintosh computers in
record numbers (see Pieter Hart-
sook’s projected Power Macin-
tosh sales figures in last month’s
issue, pages 29–36, for an inde-
pendent analyst’s estimates), and
they will be hungry for applica-
tions that do new things that were
impossible before the Power
Macintosh computers arrived.
Porting an existing application to
Power Macintosh computers will
give you enough breathing room
for you to develop a competitive,
native application.

Or look at it this way. The
Macintosh Plus of the future (that
is, the baseline, minimum com-
puter that your software might

Technology 19
AppleDirections

CD Highlights
projects, in which manually adding and seg-
menting the project would be tiresome or
impractical.

Convert•Projects is not a source code
converter. If your code uses nonportable
constructs that aren’t supported by the Code
Warrior compilers, you’ll need to manually
change your code.

Note: This is not an Apple product. It is
provided on an “as is” basis. Apple is not
responsible for any problems you may
encounter in its use.

Developer Notes Update May 94
Included here are a new developer note
describing the Macintosh DAV interface for
NuBus expansion cards and a corrected ver-
sion of the Power Macintosh developer note
that first appeared in April 1994.

The Macintosh DAV Interface for NuBus
Expansion Cards developer note describes
the electrical interface for digital audio and
video signals that Macintosh AV computers
provide for NuBus expansion cards.

The Power Macintosh Computers develop-
er note first appeared on the April Developer
CD. The new version on this month’s CD
contains minor text and art changes.

Even More System Software
This is a temporary folder, containing some
system software items we couldn’t fit on the
April 1994 Developer CD and others that have
been lurking on the Tool Chest CD before
being moved to the System Software CD. The
updated contents of this folder will appear in
their proper places on the July 1994 System
Software CD.

continued from page 11
 Inside Macintosh: PowerPC
Numerics
This book describes the floating-point numer-
ics provided with the first release of the Pow-
erPC processor–based Macintosh computers.
It provides a description of the IEEE Standard
754 for floating-point arithmetic and shows
how PowerPC numerics complies with it. The
book also shows how to create floating-point
values and how to perform operations on
floating-point values in high-level languages.

Mac Application Environment
Macintosh Application Environment (MAE)—
the virtual Macintosh for open systems—is an
innovative software product for users of RISC-
based UNIX workstations. This folder contains
product information about MAE, as well as
information about the MAE ISV Partnership
Program to help Macintosh developers to
penetrate the UNIX market with Macintosh
applications. For more information on Macin-
tosh Application Environment, see the news
story on page 10.

Newton Sample Code 1.0
This folder contains Newton Q&A documents
(in both DocViewer and Microsoft Word for-
mats); sample code compatible with the New-
ton MessagePad, Newton MessagePad 100 and
110, and Sharp ExpertPad; and several articles
on Newton development. Each Newton pro-
ject includes a text file containing the project’s
source code (for curious programmers who
don’t have the Newton Toolkit).

ShowDialogBoxes Version 2.1
ShowDialogBoxes allows you to display an
application’s dialog boxes, alerts, and cool-
Alerts. It requires an associated script file that
specifies the relationships between the text and
the dialog boxes. Version 2.1 adds support for
displaying coolAlerts under QuickDraw GX.
M A Y 1 9 9 4
SWAt 2.0b5
SWAt is a tool that allows you to set several
attributes of all Finder-related windows on a
hard disk. The attributes currently config-
urable with SWAt are home window position,
window stagger, uniform window dimensions,
scroll bar position, and folder labels. This
tool is designed to assist CD producers in
presenting a uniform look to all windows in
the Finder.

Verifier 1.0
The Verifier is an Apple internal localization
verification tool. It is used to catch localization
problems, such as corrupted CODE resources
and mismatched resource attribute bits. It is
customized to Apple’s internal needs, but it
may help you determine problems to look out
for when you localize your software.

ZoneRanger 1.0.0
ZoneRanger is a freeware utility that provides
detailed information about each heap zone
that is active on the Macintosh computer. This
information includes both the counts and
total sizes of the free blocks, pointers, han-
dles, locked handles, and resource handles in
each heap zone.

Note: This is not an Apple product. It is
provided on an “as is” basis. Apple is not
responsible for any problems you may
encounter in its use.

Next Month
A new artist, a new Inside Macintosh volume
or two, and, perhaps, a new QuickDraw GX
version.

Until then. . . .

Alex Dosher
Developer CD Leader
run on) will have a 60 MHz Pow-
erPC 601 RISC processor, 8 MB of
memory, built-in Ethernet,
speech recognition and text-to-
speech, the built-in ability to read
and write DOS and Windows
disks, and the numerous other
features already standard on
today’s System 7 Macintosh com-
puters. That’s the minimum. So
my question to you is: Do you
have any idea what you can do
with that? ♣

Editor’s note: My thanks go to
two Power Macintosh computer
engineers, Alan Lillich and Mikey
McDougall, who worked with me
and reviewed both parts of this
article. Mikey deserves special
thanks for the considerable time
he spent explaining the Mixed
Mode Manager (again and
again) until I fully understood it.

For a demonstration of the
four combinations involved in
calling and loading resources,
try using the example program
ModApp. You can find this pro-
gram in the Macintosh on RISC
Software Development Kit (avail-
able from APDA) and Metro-
werks CodeWarrior Gold (Avail-
able from APDA or Metrowerks).

Also, the Graphing Calculator
mentioned in part 1 of this arti-
cle is located in the Apple Extras
folder at the top level of the
Power Macintosh hard disk (not
in the Apple menu).

20 Business & Marketing
AppleDirections

Market Research Monthly

Business & Marketing

How to Order
The High-Tech
Marketing
Companion
In recent issues we’ve told you about a new
book, The High-Tech Marketing Companion:
Expert Advice on Marketing to Macintosh
and Other PC Users. In this book, by Dee
Kiamy and the editors of Apple Directions,
leading developers and industry experts
describe practical techniques for solving busi-
ness and marketing problems.

Due to popular demand, the book is now
available by mail order from Computer Outfit-
ters (formerly Mac’s Place). To order, call 800-
260-0009 (U.S and Canada) or 406-758-8000
(all other countries) and ask for The High-Tech
Marketing Companion, product #7272. The
price is $18.95 plus shipping and handling
(plus tax if delivered to an Ohio address), a
discount off the cover price. The book is also
available at major bookstore chains in the
United States and Canada.

Here’s a sampling of what you can expect
to read about in this book:

• how to avoid the ten most common
product launch mistakes

• a step-by-step process for choosing and
sticking with the best target market

• proven techniques for improving the
number and kind of product reviews you get;
how to deal with unfair reviews

• a systematic plan for choosing the right
name for your product.

• developing packaging that helps your
product stand out on the dealer’s shelf

• creating demos that sell—when you can’t
be there

• techniques for getting and holding the
attention of a national distributor

For a copy of the table of contents, call
Dee Kiamy at Open Door Communications
(408-266-9699) and leave your name and fax
number, or send an AppleLink message to
KIAMY. ♣
Multimedia Market: Consumers
to Take Center Stage

You just can’t pick up a business publication
these days without reading one of today’s
high-tech buzz words: multimedia. The con-
cept of multimedia is neither radical nor new.
It simply means the electronic publication of
materials using several types of data, including
text, graphics, animation, video, and sound,
generally in CD-ROM format. The term, how-
ever, has taken on greater significance as more
and more companies have jumped on the
electronic publishing bandwagon.

To help you understand the significance
and future directions of this burgeoning mar-
ket, this month Market Research Monthly
provides data that originally appeared in the
CD-ROM Market Segmentation and Buyer
Profile Report, published earlier this year by
Apple Computer, Inc.

The data, presented in the graph “Multime-
dia Market, Today and Tomorrow,” suggests
that if you’re not developing multimedia
M A Y 1 9 9 4
products—either the devices for creating or
reading content/titles, materials teaching oth-
ers to create or read content/titles, or the
content/titles themselves—you may want to
think about entering the potentially huge
market for them. Once you’re in that market,
you’ll want to tailor your products to meet
changes in customers’ needs and, especially,
to reach what’s expected to be a gigantic con-
sumer multimedia market.

According to the market research firm
Market Vision, Inc., cited in the report, the
worldwide market for multimedia products,
including hardware and software, will grow to
nearly $24 billion by 1997, up from $1.4 billion
in 1992.

All segments of the market will undergo
dramatic growth: Multimedia revenues in the so-
called “dedicated professionals” segment—that
is, people who use computers for design, print
and other visual production, and visual arts—will
$742

$252

$210

$210

$1,912

$15,535

$1,195

$5,019

Dedicated professionals
Business users
Educational users
Home computer users

1992 1997

S
ou

rc
e:

 M
ar

ke
t V

is
io

n,
 In

c.

$ in millions (000,000)

Multimedia Market, Today and Tomorrow

Business & Marketing 21AppleDirections
grow 157 percent. The general
business market for multimedia
products will be 18 times bigger in
1997 than it was in 1992, while the
educational multimedia market will
experience a four-fold increase.

The segment that will experi-
ence by far the largest amount of
growth will be the home multime-
dia market, which is expected to
increase nearly 72 times by 1997
from its 1992 size.

Expressed in more functionally
Developer Outlook
related terms, by late in the
decade, customers will be most
likely to use multimedia technolo-
gy for the following purposes:

• in business settings—for
presentations, communications,
and management-related tasks

• at home—for entertainment,
instruction, obtaining informa-
tion, and communicating

Many industry pundits point
out that the much-discussed
“information superhighway” may
M A Y
cut into the multimedia market,
once the superhighway is in place.
Much of the multimedia content
available on today’s CDs will be
delivered over the information
highway, or so its advocates pre-
dict. However, few think that the
highway will be widely accessible
to many—especially to consumers
in the home market—before at
least the end of the decade. The
next several years, then, will pre-
sent a ripe opportunity for you if
1 9 9 4
you design the right consumer
multimedia products.

Apple’s CD-ROM Market Seg-
mentation and Buyer Profile
Report, which is full of valuable
information about the multimedia
market, is available to members of
the Apple Multimedia Program
(AMP) or as part of the Apple Mul-
timedia Information Mailing
through APDA. To join AMP, call
408-974-4897; APDA ordering
information appears on page 24. ♣
Expanding Your Market Through
a Developer Program

A Case Study of the ACI Experience
By Mark Vernon, ACI US, Inc.

[Editor’s note: Even though you
may not need to establish your
own developer program, I urge
you to read this article. Much of
the advice and information ACI
offers applies to creating good
customer support programs in
general, and to developing rela-
tionships with customer groups
other than developers—such as
user groups, VARs (value-added
resellers), and other special-
interest customers.]

We all have a variety of cus-
tomer groups to attend to. And if
you sell products that lend them-
selves to third-party develop-
ment, you have a very special
group of customers to work with.
(Third parties are people who
use your products to create other
products of their own. To Apple
Computer, Inc., they are fourth-
parties.) These people are among
the most valuable customers you
can have, for reasons I’ll discuss
later. And you’ll likewise need to
give special thought to how you
work with and treat them.
Even if you’re a small company
whose resources are already
stretched thin, our experience is
that it’s especially important to
contact and begin supporting this
customer group as soon as possi-
ble. A great deal of ACI’s success
with 4th Dimension (also referred
to as 4D) hinges on the relation-
ships we’ve developed with our
third parties—something we
considered carefully from day
one, when the company was
quite small and not well known.
Although we started small, we’ve
built our developer program as
the company has grown.

The Payoff
If our experience is any example,
even though your company may
not have the resources to manage a
full-blown developer program, even
a modest investment of time and
effort can yield handsome rewards.
Here are several strategic payoffs
we’ve received from our investment
in a developer program:

• The program helps expand
our market by multiplying the
uses of our products. When you
look at 4D simply as an end-user
database product, that’s one
mindset—one that could limit the
perception and use of our prod-
uct. But we (and our developers)
don’t perceive our applications as
only database products; we per-
ceive them as tools that develop-
ers use to create their own suc-
cessful products. Naturally, this
perception expands ACI’s overall
market.

• Working closely with devel-
opers helps increase the quality
of our products. Our developers
give us a tremendous amount of
feedback about our products.
Likewise, they are a large group of
knowledgeable people who help
us solve problems, test our prod-
ucts, and create new applications.

Furthermore, since our devel-
opers are the first people outside
our company to receive beta
versions of products, they supple-
ment our efforts to find bugs and
solve other problems before a
product goes to market. This
feedback, in turn, results in fewer
user problems and more overall
customer satisfaction.

• Having an effective develop-
er program builds customer
confidence in our company and
products. Customers see how
many products are based on 4D—
and how many companies stake
their livelihood on our applica-
tion. Our reputation is closely tied
to the reputations of our third
parties, and vice versa. This inter-
dependency creates a unique
relationship that benefits both
parties, and it significantly
enhances the market’s perception
of ACI’s stability and credibility.

• The developer program
creates an effective sales chan-
nel. One of our developer pro-
grams that you’ll read about later
in this article is targeted at VARs.
Approximately 20 percent of our
total sales comes directly through
VARs, who resell our products.
These VARs have created their
own applications based on 4D
and related ACI software. Because
our VARs are focused on selling
the value of their unique, finished
applications, ACI is able to reach
new customers without creating
conflict with our dealer channel.

We look at it this way: Our
dealers make money by selling
4D as a general-purpose database
system. VARs, on the other hand,
create value-added products and
then act as a sales force to create

22 Business & Marketing
AppleDirections
demand for and sell those prod-
ucts. The more products they sell,
the more we sell.

• The developer program
helps us to be more effective in
other sales channels. We do sell
our products through channels
other than VARs, but historically
we’ve tended to use other chan-
nels more as a fulfillment vehicle
for the demand that ACI spends
the money and other resources to
create. Recently, however, after
doing some analysis we selected
approximately 200 key dealers in
which to invest additional
resources. Working with each
dealer, we’ve either identified a
well-chosen dealer employee to
become an ACI developer, or
teamed the dealer with one or
more existing ACI developers.
The benefit is that customers may
find it attractive to purchase, from
a dealer, a complete hardware/
software solution that includes a
customized 4D application.

• The program creates differ-
entiation. Having a strong devel-
oper program can be a key differ-
entiator in your overall
competitive picture. If you
demonstrate that you are commit-
ted to your product and markets
and that you’re in it for the long
haul, you’re more likely to attract
developers to your product. This
is especially important in highly
competitive product categories.
Developers stake their livelihoods
on your plans and success; after
they’ve made a substantial invest-
ment in learning your product
and developing their own data
and applications with it, they are
reluctant to change.

• The developer program
leverages and multiplies our
word-of-mouth efforts. I believe
that the single most potent way to
sell software is by word of
mouth—one person talking to
another about a product. Word of
mouth is especially important if
you don’t have resources for
supporting a large advertising,
direct mail, or PR budget. When
we put our products into the
hands of developers—advanced
users, themselves—they become
a source of recommendations and
information to people who are
making buying decisions. There-
fore, our developer program
creates a base of experts and
influencers that significantly lever-
ages and multiplies our efforts to
spread the word about our prod-
ucts. And when those third-party
companies generate word-of-
mouth about their successful
products that are based on our
product, we reap some additional
benefit.

How Our Program
Is Structured
Today, we estimate there are 5,000
ACI developers worldwide, 3,200
of which are registered members
of our developer programs around
the world. However, in 1987 we
started out very modestly in the
United States with only a handful
of developer contacts.

When you’re a small company,
any positive contact you have
with developers—any support or
information you give them, any
perception that you create about
your commitment to them—will
go a long way. We started with a
one-size-fits-all approach that
included such things as offering
developers advance beta versions
of products and shipping them
final versions before we put prod-
ucts on the market. We also began
mailing developers technical tips
and offering some small-scale
training programs.

When we first started the pro-
gram in 1987—for a few months
before and after we first shipped
4D—developers who purchased
4D received our support for free.
Soon after that we instituted a
more formal program, which
developers joined for a fee.
(Today, it costs $895 to join one
of our programs.)

These simple, first steps
accomplished some important
things. They helped make
M A Y
developers feel they were a valu-
able part of the ACI team. These
steps also helped bring develop-
ers up to speed on our products;
before a product hit the market,
developers were already knowl-
edgeable about it. This benefit
was particularly important
because developers represent
themselves to their customers as
being the source of information
about products. Indeed, in many
ways our developers are ACI.

As our company and developer
base grew, we began adding more
support elements, such as techni-
cal information mailings, training,
and other things. Likewise, the
resources we invest in this pro-
gram have increased. Initially, one
person in our company was
responsible for overseeing the
developer program. Now, three
people do that job in the United
States alone, supplemented by an
outside firm that helps manage
our annual developer conference.
These three staffers work closely
with other groups within the
company, particularly our engi-
neering department, which gener-
ates the technical information and
support for developers.

Today, a significant portion of
our marketing budget is allocated
to our developer program. We
support three kinds of develop-
ers: in-house corporate develop-
ers who create 4D-based products
solely for use in their own compa-
nies; consultants, who create
custom 4D databases for clients
on a contract basis (systems inte-
grators fit into this category); and
VARs, who use 4D to create new
applications for resale.

We’ve had to modify our initial
approach to accommodate the
different needs of each group.
(There is, of course, some over-
lap.) We now offer two programs:
The ACI Corporate Developers
Program for in-house developers,
and the ACI Professional Develop-
ers Program for consultants,
which gives a developer the fur-
ther option of becoming a VAR.
1 9 9 4
(By choosing to become a VAR, a
developer must also sign some
legal agreements that dictate the
terms of the resale relationship.)

While each program is tailored
to its audience, the basic compo-
nents of the programs are similar.
(For a more complete description
of what constitutes the ACI devel-
oper program, see the text box
“The Anatomy of a Developer
Support Program” on page 23.)

ACI Developers
on the Global Front
Because ACI is an international
company with subsidiaries in the
United States, France, the United
Kingdom, Germany, and Sweden
and has distributors in many
other countries, outside the Unit-
ed States we offer separate (but
similar) developer programs.

Wherever possible, we tailor
the content and language to the
needs of the local market. Techni-
cal content information is coordi-
nated between the United States
and France for release throughout
the world.

In countries where we have a
distributor but no subsidiary, the
distributor’s developer program
uses content generated by ACI.
However, the distributor may add
its own content to the program if
our agreement allows this.

The Challenges
As I said earlier, the rewards from
offering these programs are big,
but running a developer program
isn’t without its share of chal-
lenges. Here are some things to
seriously consider as you begin to
put together a developer contact
program of your own.

• The program requires an
up-front investment, and results
may be difficult to quantify. The
money you put into your program
may very well exceed the result-
ing revenue, and you may have
difficulty quantifying the
monetary benefits. Sometimes
you’ll be able to show a direct
return on your investment; for

Business & Marketing 23AppleDirections
example, the money we receive
from VAR sales is easily tracked.

But what is difficult, if not
impossible, to measure are the
many intangible returns from our
developer program investment,
such as those I mentioned earlier
(increased company credibility,
word-of-mouth, and so forth). It’s
hard to measure the effect of
these benefits on our overall
sales, both short-term and long-
term.

Finding ways to quantify and
justify your investment is no
simple task. While you know in
M A Y
your gut that your program is
generating sales and multiplying
your influence, attaching a num-
ber to it is difficult. Based on our
experience, the best advice I can
offer is to put processes in place
to monitor your progress and
ensure that you stay the course
1 9 9 4
and that you’re not spending
money against some part of a
program that isn’t meeting your
goals. Which brings me to the
next challenge. . . .
The Anatomy of a Developer
Support Program

While ACI offers two different programs tailored to
the needs of its developers, the programs share some
common elements:

• Telephone technical support. In the United
States, for example, we previously had a single tech-
nical support phone number for customers and devel-
opers alike. Once developers identified themselves as
being participants in our program, their calls were
routed into a priority queue.

However, starting in May 1994 there will be a new
toll-free support line dedicated exclusively to two
groups: developers and users who purchase blocks of
support time. Members of ACI’s developer program
will continue to receive free, unlimited telephone
support and priority routing. (Users who don’t pur-
chase blocks of support time will have several other
technical support options to choose from.)

A key consideration in structuring our phone
support effort is making sure that the tech support
operators who take developer calls are senior people
who can answer the very technical and often compli-
cated kinds of questions that developers ask.

• Monthly mailings. Each month, developers
receive a package of information from ACI that helps
keep them up-to-date about ACI and its developer
community. The mailings’ content varies each month,
but generally it contains such items as technical
notes, software updates, discount offers for ACI and
its developers’ products, product information about
other developers’ 4D products, and special offers
from various hardware vendors.

• Training programs. Whenever possible, we
conduct training classes prior to a new release to help
developers prepare for when the product hits the
market. While this training helps developers, it also
gives us the bonus of getting final feedback from
knowledgeable users, which we can use to fine-tune
the product and class when needed.

Typically, these programs consist of a day or two
of classroom instruction that includes hands-on
experience with our software. Classes are held in
Silicon Valley, in our New York offices, and also in
rotating locations across the country on an ongoing
basis. While all ACI classes are open to everyone,
developers in our program get a first shot at “first-
run” classes about new versions or products. They
also pay a lower price for these classes.

• An annual developers’ conference. At first this
was a one-day conference, but over the years we’ve
gradually expanded it in response to what developers
say they need to accomplish. This year, for the first
time the conference will span three days.

The main goal is to communicate to developers
what ACI is doing at a strategic, corporate level:
During the first day of the conference, we present our
goals and plans for the next year and beyond. In
addition, we conduct demonstrations of new versions
and products that are under development. This pre-
pares developers for what to expect from ACI and
thereby helps them make better decisions for their
own businesses.

Another important conference goal is to give atten-
dees near-term information and guidance through
seminars and workshops on a number of tracks. For
example, we’ve conducted sessions on how to opti-
mize database performance, design user interfaces,
fully utilize add-on products such as 4D Write, and
connect to SQL-based systems running on other
platforms.

Non-members can attend our annual conference,
but they pay more than program members do.

• Support on electronic bulletin boards. We
maintain a forum on CompuServe and a bulletin
board on the AppleLink network. The CompuServe
forum contains a locked folder to which only our
developers have access. It provides a place for
developers to “chat” among themselves, exchange
ideas, discuss problems, and the like. This forum
has provided us with extremely valuable informa-
tion. We also post utilities, tools, updates, and other
software there for developers to download. In a
similar way, the AppleLink bulletin board has also
been helpful in supplementing our developer sup-
port efforts.
• Squeaky wheels can con-
sume your resources and steer
you off course. As you well
know, your developer group, like
every customer constituency, will
have more than its share of
squeaky wheels. Be careful not to
expend a disproportionate
amount of your resources cater-
ing to them; there’s a silent
majority whose needs and issues
can be very different from those
of the more vocal crowd, and
you need to be able to meet their
needs, as well.

It’s also very easy to fall into
the trap of creating a strategy or
changing your direction based on
what you hear from the more
vocal group. In fact, before you
know it you could change your
entire company strategy based
mostly on input from squeaky
wheels—a move that can prove
highly damaging.

To stay on course, try not to let
yourself become overwhelmed by
this kind of input. Make the effort
to reach out to the less vocal
members of your developer
group and learn what their needs
and issues are.

Our “outreach” program
includes a variety of activities. We
invite developers to informal
forums or meetings around the
country. We also try to call all of
our developers at least once a
quarter. Because we have so many
of them, this job is shared
between our developer services
team and the sales reps.

I also suggest that when a
problem is brought up by a
more vocal group, verify it with
other contingents of your devel-
oper group before you respond
to it.

The bottom line here is to
manage your time and resources
carefully, so that you can serve
your overall group’s needs and

24 Business & Marketing
AppleDirections
meet your program goals.
• Accounting can be tricky.

Allocating expenses to and profits
from a developer program can
also be difficult. It’s important to
decide, at the beginning, where
the money for the program will
come from and where in your
company the profits (or losses)
will be posted. Getting agreement
at the start from all affected par-
ties or departments in your com-
pany is crucial to working peace-
fully with them when the
program’s bills start rolling in.

It all boils down to what your
financial goals are for your pro-
gram. Will you shoot for breaking
even, or will you try to make
money to invest back into the
program? Will you view the pro-
gram as a marketing expense, an
engineering one, or a shared
one? A cost center? A profit cen-
ter? You should clearly answer
these questions before launching
your program.

At ACI, we’ve chosen to view
our program as a marketing
expense. Also, our revenues from
VAR sales aren’t counted as profits
to the developer program but to
the product lines themselves. It’s
easy to get buried in the account-
ing, and our marketing depart-
ment spends a lot of time with
the finance department to plan,
budget, and track developer
program expenses.

In the long run, our goal is for
the program to pay for itself, and
if we make a little bit of money,
as sometimes we do, all the bet-
ter: We then have additional
dollars to invest into expanding
the program.

• Your mistakes can be ampli-
fied. If you create this kind of
APDA Ordering Information
To place an APDA order from within
United States APDA office from abro
United States, you may prefer to wo
in the APDA Tools Catalog.
developer community, when you
make a mistake with a product
you’ll feel the backlash harder and
faster. Our mistakes make an
impact on developers’ businesses,
and such mistakes can potentially
imperil our developers’ liveli-
hoods. But the fact of life is that
with a complex product like 4D,
mistakes are inevitable. We’ve
done what almost all companies
do at one time or another: failed
to ship on a promised date,
missed a bug—we’re all familiar
with the list of things that can go
wrong.

However, the mistakes them-
selves aren’t so bad; it’s how you
handle them and how you
respond to developers that can
make the difference. Knowing
when and how to respond (or
sometimes how not to respond)
takes experience and insight. It
can be a difficult call; often, the
natural inclination is to pull back
and lock the door. Try to suppress
that impulse, even when the
going gets tough. Avoid creating
the “us versus them” mentality.
Remember that the success or
failure of these developers
reflects directly back on you.

So try to keep the communica-
tion lines open; let your develop-
ers know that you understand the
problem and the position it puts
them in, and that together you’ll
find a solution. Tell them early
and often, and repeat it until you
resolve the problem.

At this point the squeaky-
wheel dilemma really kicks in.
You must quickly investigate each
problem to determine the extent
of its influence: Is it something
that cuts broadly across your
developer base, or is it only a
M A Y

 the United States, contact APDA at 800-
ad, the number is 716-871-6555. You c
rk with your local APDA contact. For a lis
problem that applies to the
developers who brought it to
your attention? Based on what
you learn, act accordingly. For
example, a broad-based problem
may result in our distributing an
update of our software. On the
other hand, we may provide a
“workaround” solution if the
problem is limited to very few
developers, and correct it in our
next product release.

• Enforcing quality control is
difficult. Because our reputation
is closely tied to products our
developers produce with 4D, it’s
important to closely watch the
quality of those products. At first
we created a Certified Developers
Program, in which we reviewed
developers’ products. After a
short while, however, we stopped
doing that; it consumed a lot of
time and resources because we
found ourselves struggling to set
up and enforce a body of subjec-
tive criteria. And in some cases,
we found we had less expertise in
a specific application area than
the developer did. In the end we
didn’t net much from the effort.

We began to feel that customer
satisfaction was a better indicator
of how developers are doing. In
most cases, if a developer’s prod-
uct isn’t up to par, we’ll hear
about it from unhappy customers.

So we’ve shifted our focus
away from setting up “certifica-
tion hurdles” to constantly moni-
toring customer problems. When
the occasional problem does crop
up, we work with the developer
to improve that product, through
training, more technical support,
or whatever else might be need-
ed. Also, now that our company
has a sizable sales force, we can be
1 9 9 4

282-2732; in Canada, call 800-637-002
an also reach us by AppleLink; the addre
t of non-U.S. APDA contacts, see the “I
in direct contact with developers
more frequently, and we can even
visit user groups to get a better
feeling about what’s happening
with customers.

How to Begin Your
Approach
There’s no real cookbook
approach to starting a developer
program. It’s more like the menu
in a Chinese restaurant—you
know, the “family dinner” option
that gives you choices depending
on the tastes of those at the din-
ner table: pick one from column
A, two from column B, and so
forth.

The best advice I can give you
is to size up your developers and
their needs and determine what
your own goals are. Then, take a
good look at your pocketbook
and choose from the many
options at your disposal. If you
find that you must experiment a
little, as we have, don’t cringe. A
developer program is a living,
breathing entity that changes as
your company changes. Even for
us, who have been doing these
programs for a while, the picture
is constantly changing. For exam-
ple, as ACI moves its products
onto several new platforms, we’ll
have to find ways to support new
developers with different needs.

Remember, this is a not a desti-
nation, but a journey . . . so enjoy
the trip! ♣

Mark Vernon is vice president of
sales and marketing for ACI, an
international company that
develops multiplatform database
products and whose U.S. head-
quarters are located in Cuperti-
no, California.
9. For those who need to call the
ss is APDA. If you’re outside the
nternational APDA Programs” page

	Inside This Issue
	Power Macintosh Tools Announced
	Staying Bullish on Newton
	Editor’s Note
	When One Door Shuts, Another Opens
	GeoPort Gains OutsideSupport, Goes Cross-Platform
	Apple Ships Macintosh Quadra DOS Compatible Computer
	MAE Expands Your Market to UNIX Users
	CD Highlights
	Speed Is an Interface Issue
	Understanding the Power Macintosh Architecture, Part Two: A Skeleton Key to Mixed-Mode Issues
	How to Order The High-Tech Marketing Companion
	Multimedia Market: Consumers to Take Center Stage
	Expanding Your Market Through a Developer Program
	APDA Ordering Information

