
Strategy MosaicApple News

The Developer Business Report January 1996

Editor’s Note:
The New Year That Was 2

Working With Apple:
Three Perspectives 3

Apple Ranks #1 in Personal
Computer Sales in the U.S. 13

New Technotes Give Developers
More Options 13

Chinese Dictation Kit Wins COMDEX
Asia “Best of Best” Award 14

CD Highlights: System Software
and SDK Editions 15

OpenDoc Human Interface FAQs 16

Demystifying DSOM 17

Human Interface: Holiday Magic 24

Ideas for Maximizing Installed
Base Sales 26

Producing “Bug-Less” Software—
Part 1: The Testing Process 29

Developer University Schedule 32

The Internet Page 33

AppleDirections
Inside This Issue

Macworld Developer Central
Come see the latest developer products
from Apple Computer, Inc., at Developer
Central, part of this year’s San Francisco
Macworld Expo, January 9–12. We’ll be
giving away free copies of Apple Directions
and develop, the Apple Technical Journal,
and running demos of our latest tools and
technology, so come on by!
Apple’s
COMDEX
Windfall
Company Showcases Variety
of New Technologies

Buoyed by its recent market share gains, Apple
Computer, Inc., took full advantage of the
COMDEX electronics show—the largest U.S.
computer trade show, held in November in
Las Vegas—to showcase a wide variety of new
products and technologies.

The announcements demonstrate the
momentum Apple has attained coming off its
record-setting fiscal year 1995 fourth quarter,
or Q4 ’95 (July through September 1995).
During the quarter, Apple posted unprece-
dented revenues of $3 billion and sold 1.25
million Macintosh systems. Macintosh ship-
ments worldwide grew 19 percent faster than
overall personal computer shipments in the
quarter, according to International Data Cor-
poration and Apple data.

Another research firm, Dataquest, said that
Apple sold 9 percent of all personal computers
shipped worldwide during Q4 ’95, up from 7.4
percent the quarter before, to reclaim second
place in personal computer sales. Compaq
gained the top spot in the Dataquest study,
with 10 percent of worldwide shipments.

Among Apple’s COMDEX announcements
and demonstrations were the following:

• the PowerPC Platform specification,
please turn to page 11
International
Development
From Here to
Copland
The World on a String
(of Text, that is)

Amid the unfolding of the more dramatic
chapters of the Copland story, a quieter but
equally important part of the tale has fallen
into place. I’m talking about the Copland solu-
tions for international development, technolo-
gies that let you develop a single, globalized
version of your software that can readily be
localized for all the world’s major computer
markets. Apple Computer, Inc., calls this kind
of software “world-ready,” because it’s ready
to be localized and sold in any corner of the
world where Apple does business, and not
just in a single country.

In this month’s column, I’m going to tell
you about the Mac OS international technolo-
gies, in their current form and under Copland,
because one of the nicer parts of the Copland
story is that software developed using today’s
international technologies will work under the
forthcoming next-generation version of the
Mac OS. I’m also going to say why Apple’s
international technology solutions present
significant opportunities for Macintosh devel-
opers, how you can begin to take advantage of

please turn to page 4

2 News
AppleDirections

AppleDirections
Volume 4, Number 1

Apple Directions, the monthly developer newsletter
of Apple Computer, Inc., communicates Apple’s
strategic, business, and technical directions to deci-
sion makers at development companies to help
maximize their development dollar. It is published
by the Apple Developer Periodicals group within
Apple’s Developer Press.

Editor
Paul Dreyfus (AppleLink: DREYFUS.P)

Technical Editor
Gregg Williams (GREGGW)

Business & Marketing Editor
Kris Newby (NEWBY.K)

Associate Editor
Anne Szabla (SZABLA)

Production Editor
Lisa Ferdinandsen (LISAFERD)

Contributors
Peter Bickford, Dave Curbow, Alex Dosher, Victor J.
Hnyp, Ray Kaupp, Kerry Ortega, John Pugh

Manager, Developer Press
Dennis Matthews

Manager, Apple Developer Periodicals
Mark Bloomquist

Production Manager
Diane Wilcox

Prep and Print
Consolidated Publications, Inc., Sunnyvale, CA

© 1995 Apple Computer, Inc., 1 Infinite Loop, Cupertino,
CA 95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleLink, AppleTalk, HyperCard,
LaserWriter, Mac, MacApp, Macintosh, Macintosh Quadra, MPW,
MultiFinder, Newton, PowerBook, PowerTalk, QuickTime, SADE and
WorldScript are trademarks of Apple Computer, Inc., registered in the
U.S. and other countries. AOCE, AppleScript, develop, eWorld, Mes-
sagePad, OpenDoc, Power Mac, QuickDraw, and QuickTake are trade-
marks of Apple Computer, Inc. Adobe, Acrobat, PageMill, Photoshop
and PostScript are trademarks of Adobe Systems Incorporated, which
may be registered in certain jurisdictions. NuBus is a trademark of
Texas Instruments. PowerPC is a trademark of International Business
Machines Corporation, used under license therefrom. UNIX is a regis-
tered trademark of Novell, Inc. in the United States and other countries,
licensed exclusively through X/Open Company, Ltd. All other trade-
marks are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a recom-
mendation. All product specifications and descriptions were sup-
plied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings, agree-
ments, or warranties take place directly between the vendors and
prospective users. Limitation of liability: Apple makes no warranties
with respect to the contents of products listed in this publication or
of the completeness or accuracy of this publication. Apple specifi-
cally disclaims all warranties, express or implied, including, but not
limited to, the implied warranties of merchantability and fitness for a
particular purpose.
What a difference a year makes. This time
last year, as the experts peered into their
crystal balls for 1995, Apple Computer, Inc.,
seemed shrouded in a dark mist. Apple’s
small market share was destined to evapo-
rate. Developers were fleeing the platform, or
so the rumors went. And it was going to be
the year that the next version of Windows—
the OS that was to be called Windows 95—
finally buried Apple once and for all.

Right.
The reality of 1995 couldn’t have been

more different than the experts’ predictions.
I’ll just step aside from all the editorializing
and let the facts speak:

• Apple registered worldwide market
share gains. In its fourth 1995 fiscal quarter
(Q4 ’95)—that is, July through September—
worldwide Macintosh shipments grew 19
percent faster than shipments of all personal
computers combined, according to Interna-
tional Data Corporation (IDC) and Apple’s
own data. During the same quarter, Dataquest
said that Apple sold 9 percent of all personal
computers shipped around the world, up
from 7.4 percent the previous quarter.

• Apple also gained share in the United
States. In Q4 ’95, IDC and Dataquest said
that Apple sold 13 percent of all computers
shipped there, more than any other personal
computer vendor.

• The Macintosh share of the world’s num-
ber two market, Japan, continued to climb,
growing from just over 16 percent at the
beginning of the year to nearly 20 percent,
according to IDC Japan and Dataquest Japan.

• Apple took a commanding lead in the
U.S. educational market; according to Quali-
ty Education Data, Apple has a 63 percent
share of the U.S. public school personal
computer market, up from 59 percent at the
end of 1994.

• In some specialized segments of the
market, Apple maintains a strong, even dom-
inant presence, to wit:

—the Macintosh computer holds a 76
percent share of the professional color-pre-
press market, a share that will grow to over
77 percent next year, according to Griffin Dix
Research.

—Thirty percent of U.S. desktop publishing

Editor’s Note

The Year That W
J A N U A R Y 1 9 9 6
software revenues—and 24 percent of U.S.
home education software sales—went to Mac-
intosh developers in the first half of 1995,
according to Software Publishers Association.

So much for the idea that Apple’s market-
share is evaporating. Now, what about the
quaint notion that developers are fleeing the
platform?

• A record number of developers—more
than 3,500—attended the 1995 Worldwide
Developers Conference, held last May. Half
of them were attending the event for the
first time.

• As of mid-October, developers had
delivered more than 1,400 32-bit applications
that run in native mode on Power Macintosh
RISC-based systems, a 300 percent increase
since the beginning of the year.

• Within three weeks of the posting of
version 1.0 of the OpenDoc software devel-
opment kit (SDK) at Apple’s Web site, nearly
30,000 different people had initiated 48,000
requests to download documentation and
software from the SDK; over 300 developers
have already committed to delivering Open-
Doc software.

• In Apple’s spring 1995 survey of Macin-
tosh developers, 97 percent said they planned
to continue Macintosh development for the
next two to three years, while 85 percent had
plans to develop new Macintosh products.

Need I say more? Now, about the Win-
dows 95 coup de grace—

• A recent IDC study concluded that the
Macintosh software market is more
profitable than the Windows market, and will
grow at least as fast or faster over the next
five years. (See “IDC Report Shows Mac OS
Better Business Proposition” from last
month’s issue for details.)

• Dataquest recently downgraded the
number of copies of Windows 95 it expects
Microsoft to sell by the end of 1995 from 30
to 16.4 million units.

’Nuff said about 1995. Based on Apple’s
performance last year, I personally can’t wait
to see what 1996 brings. Happy New Year!

Paul Dreyfus
Editor

as

News 3
AppleDirections
[Editor’s note: On these pages we usually look outside Apple for news
and perspective that affects the Apple developer community. This
month, IndustryWatch steps aside temporarily to make room for a
look inside Apple, which we hope will be useful to you.]

When Apple Computer, Inc., created Apple Developer Relations a few
months ago, the most important reason for the reorganization was to
make it easier for developers to work with Apple. Uniting Developer
Technical Support (DTS), Evangelism, Developer Press, Developer Uni-
versity, Developer Programs, and other developer-related functions lets
you work with a single, unified organization, and (we hope!) makes life
better for you.

In that spirit, we’ve pulled together three views of how you can deal
with Apple in a way that gets you the most for your efforts. The first
two come from DTS engineers Dave Polaschek and Brian Bechtel and
relate mostly to getting technical support from DTS. The third comes
from new Apple Fellow Guy Kawasaki. He presents good general advice
for working with Apple, whether or not you’re a program member.

By the way, if you’re not yet a program member, perhaps the best
first step you can take in working with Apple is to join the program
that’s right for you. For more information on the programs and how to
join, visit the Apple World Wide Web site (http://dev.info.apple.com/
developerprograms.html), send inquiries to devsupport@applelink
.apple.com (DEVSUPPORT if you use AppleLink), or call the Developer
Hotline at 408-974-4897.

From Dave Polaschek
As an outside developer until recently, and a DTS engineer within
Apple now, here are a few things I’ve learned about how to deal with
Apple.

• There’s a lot of information available—use it. While I don’t want
to discourage people from contacting DTS, it’s going to be quicker and
more productive for you to look information up first—in Inside Macin-
tosh, at our Web or FTP site, in Technotes, and so forth, than to send us
an e-mail message just to have us look it up for you. Save DTS for the
really tough questions that can’t be readily answered by available docu-
mentation.

• When you find someone within Apple who can help, don’t abuse
that relationship. When you get stuck on a really hard problem, having
someone inside Apple who can give you some kind of answer is a very

AppleWatch

Working With Apple: Th
J A N U A R

January Apple Directions Online
January’s Apple Directions will be available by December 15 at the
following locations:

AppleLink: path—Developer Support:Developer Services:Periodi-
cals:Apple Directions.

Internet: http://dev.info.apple.com/appledirections/adtoc.html
eWorld: in the Apple area of the Computer Center.
valuable, and limited, resource. Remember that your contact person
has a job to do, too, and if you use that person’s time answering ques-
tions about things you could’ve looked up yourself, or with talk of the
weather, he or she may not have the time or inclination to help you
when you really need help.

• When you’re corresponding with Apple, make sure you identify
yourself. This is especially important when working with DTS, but it
applies to all correspondence with Apple. If Apple employees aren’t
sure who you are, they often have to take extra time to determine what
they can tell you. When you send us e-mail, please include a return
address (not all mailers automatically generate good return addresses),
and a phone number (in case we can’t get through via e-mail). All cor-
respondence to DTS is automatically acknowledged. If you don’t
receive this acknowledgement, it means either that we didn’t get your
mail, or that we’re unable to return mail to you. Remember that the
Internet does not have guaranteed mail delivery.

• When dealing with Apple, state your problem clearly. I’ve been
on both sides of the “DTS answered a question, but it wasn’t the one I
was asking” problem. It almost always results from asking a question
and not giving enough background data for DTS to know what you’re
really asking. Taking an extra half-hour to figure out what your problem
and your goals are before you ask your question, and stating it clearly,
can save time in getting an answer.

From Brian Bechtel
Here are some thoughts on how to deal with Apple from the outside.

• Use e-mail, not the telephone, and try the official channels first. If
this approach doesn’t work, go around the channels, but complain, too.

• Put a useful subject line on the e-mail, not something like “techni-
cal question.”

• Include your name and telephone number on all e-mail messages,
so we can call you.

• State what you’ve already done, read, or coded in your attempts
to solve the problem, so you won’t get frustrated by answers suggesting
what seems to you to be obvious.

• Provide sample code in your e-mail, if possible and appropriate.
• Tell us what extra conditions are involved (for example, “only fails

on a Macintosh Quadra,” “only interested in the education market,”
and so on).

• Give feedback to devfeedback@applelink.apple.com. This e-mail
address is read by the Developer Relations managers up to and includ-
ing the vice president. If we don’t know something is wrong, we can’t
fix it.

Here are additional observations based on too many years at Apple:
• Using DTS is usually more efficient than calling random engineers

for technical questions.
• If DTS doesn’t help, don’t stop using us; complain to

devfeedback@applelink.apple.com.
• Having contacts in engineering departments works only if you

continue to cultivate new contacts, since projects end, and engineers
move on to other things.

ree Perspectives
Y 1 9 9 6

4 News
AppleDirections
those opportunities, and why
Copland will make it even more
compelling to undertake interna-
tional development efforts.

For those of you just joining
the Macintosh developer commu-
nity, Copland is the next major
release of the Mac OS. Intended
to provide a stable, modern plat-
form for next-generation Mac OS

Strategy Mosaic

Copland
continued from page 1
computers, Copland is built
around a microkernel and is
being written almost entirely in
“native” PowerPC code. Signifi-
cant portions of Mac OS code are
being rewritten so that Copland
can provide greater stability and
performance and preemptive
multitasking services. For a com-
plete overview of Copland, you’ll
want to read “Copland: Technolo-
gy for Customers’ Sakes” in the
June 1995 issue of Apple Direc-
tions, available on the World Wide
Web at http://dev.apple.info.com/
appledirections/june.html.
J A N U A R
Macintosh on the
Move Outside the U.S.
It’s an important part of Apple’s
strategy to continue to make the
Mac OS the preeminent platform
for international software devel-
opment—and to encourage you
to develop world-ready software,
which can be released in more
than a single geographic market
at the same time. Why is this
important? Consider the following
facts:

• The Macintosh market out-
side the United States is increas-
ing. Apple received 47.6 percent

Y 1 9 9 6
of its fiscal year 1995 revenues
from outside the United States,
up from 45.7 percent the year
before.

• Japan is now the second
largest Macintosh market, after
the United States, and the Japan-
ese market is growing. In 1994
personal computer sales in Japan
grew 35 percent, and sales are
expected to grow another 50 per-
cent by the end of 1995, topping
the 5 million mark, according to
International Data Corporation.
The Macintosh share of the Japan-
ese computer market is growing:
From Guy Kawasaki

Life is full of bizarre ironies. The one that bugs me the most—on an
almost hourly basis—is the issue of the relationship between Apple and
its software and hardware developers. Apple needs the help of develop-
ers to prevent Microsoft’s Domination of Society (MS-DOS), and thou-
sands of developers are willing to help in this battle. Yet, despite this
apparent match of need and capability, there’s this idea that the two
often don’t work well together, to the frustration of everyone.

My comments specifically address ways for you to get the most out
of working with Apple; these principles hold true for anyone who wants
to help—or get help from—the six-colored mothership. Here, in the
most honest and up-front manner possible for a person who doesn’t
want to be an ex-Apple Fellow, are the rules for how developers can get
the most out of Apple.

1. Don’t take no for an answer. If there’s a single misconception
that drives developers crazy, it is that Apple is a single-headed beast.
This isn’t so. Apple has 12,000 employees, and every one of them thinks
he or she is a vice president (except for the 12 who think they’re presi-
dent). Apple is like the Internet: You can’t bring the whole system
down, because each part works independently.

Believe it or not, the multiheaded nature of Apple is good, because if
one part of Apple turns you down for anything, you can keep asking
until you find someone who agrees. Just because one part of Apple says
“no,” it doesn’t mean that a company-wide message has gone out or
that a company-wide decision has been made. So keep asking until you
hear what you want to hear.

2. Match your product to the current Microsoft marketing thrust.
While Microsoft’s system software is (at least) two years behind Apple’s,
its hype is two years ahead. If Microsoft announces a feature for Win-
dows, you can bet that someone at Apple is worried that Apple doesn’t
have a response. Ironically, Apple probably had the idea two years
before Microsoft but didn’t capitalize on it. (First Apple copied Xerox’s
technology; now it’s copying its approach to new technology—for sure
I’ll be an ex-Apple Fellow!) The bottom line: Watch what Microsoft
announces, then tell Apple that you have the Macintosh version of the
same idea, and the waters will part.

3. Don’t be proud, just get in. There are developers who only believe
in home runs. They want the worldwide marketing campaign to focus
on their product just like PageMaker in 1985. They want to be bundled
with every Macintosh. Anything less, and they are disappointed, frus-
trated, and angry. They can’t understand how Apple can be so stupid as
to not see things their way.

In the history of Apple, there’s been only one PageMaker in the
sense of company-wide focus to make a product a success. So you
should take what you can get just to get inside the Apple kimono. The
strength of Apple computer is in its soldiers: the thousands of employ-
ees who can help you in little ways. If you make enough “vice
presidents” happy, one day you may find Vice Presidents making you
happy.

4. Understand the Apple employee’s reality. True or false: Apple
employees all take two hours for lunch, drive BMWs, sit around in
bean-bag chairs all day, and have no ideas about how to make Apple
successful. False. Apple employees’ lives are full of turmoil,
budgetary constraints, and tsunami-like inundation of ideas coming
from every direction—from their subordinates to their grandparents
to their dentists. If you got to know them, you’d probably like and
respect them—even the ones who set the prices for the developer
services programs.

The touchiest situation occurs when developers come to Apple
with ideas for penetrating markets. Apple gets more good ideas than
it can comprehend, much less implement. For a close corollary, think
of what it would be like to implement every feature request that
every customer made for your software. (Please don’t try to tell me
that you do implement every request, because I’ve run a software
company.)

5. Do what’s right for your company. Even in my most evangelistic
moments, I don’t recommend that you do what’s right for Apple,
instead of doing what’s right for your company. If you do things for
Apple and your company fails, then you might say to Apple, “We did
this for you, so now you owe us.” Apple will deny it owes you anything,
and the relationship will go into the toilet. Enlightened self-interest is
the best path—then, if you’re successful, you’re successful. And if you
fail, there’s no one else to blame.

There you have it: the only guide to working with Apple you’ll ever
need. May you create the next PageMaker and be the next Aldus. If you
do, and this column helped you, I might claim some credit for your
success. ♣

News 5
AppleDirections
According to the Software Pub-
lishers Association (SPA), Macin-
tosh software made up 18 percent
of total software sales in Japan in
the second quarter of 1995, com-
pared to 13 percent in Q2 1994.

• Asian software sales in the
second quarter of 1995 generated
more than 90 percent more rev-
enue than sales in Q2 1994, again
according to the SPA. Software
sales are growing at well over a
100 percent annual pace in some
markets, including India and Pak-
istan, New Zealand, Thailand, and
China. These markets are small—
software sales in India and Pak-
istan totaled just $4.8 million in
the first half of 1995, while total
sales for the same period were
only $2.7 million in China—but
they’re experiencing phenomenal
growth.

• Computer sales are expand-
ing throughout the world into the
consumer market, in which local
users can’t be expected to know
more than their native language.
To reach local consumers in other
geographic markets, it’s increas-
ingly important to have products
that are carefully localized for
those markets. (In an extreme
example of this, French
commerce law now requires soft-
ware products to be localized if
they’re to be sold in France.)
Even if hardware and software
sales outside the United States
weren’t expanding, Apple thinks
it’s good business to develop
international, world-ready soft-
ware. Apple has localized the Mac
OS for more than 30 geographic
markets, which span virtually
every country where computers
are sold in significant numbers.
Your world-ready software can be
localized easily to work in any of
those markets.

For the incremental extra
resources you’ll spend making
software world-ready, you get a
product capable of earning rev-
enues in many geographic mar-
kets at once. For many of you, this
will mean developing an English-
language version of your product,
but developing it with the rest of
the world in mind by using Mac
OS WorldScript technologies.
Doing so is not much more diffi-
cult than developing your prod-
uct for a single market. On the
other hand, if you develop with
only a single different geography
in mind—even if it’s the burgeon-
ing Japanese market—you end up
with software that has to be sig-
nificantly reengineered, at great
expense, before it can be sold in
other countries.

For those of you who develop
first for other languages, what I
said in the last paragraph holds
doubly true, because your prima-
ry geographic markets will be
smaller: You simply open yourself
to more revenue opportunities by
developing world-ready software,
instead of developing for only
one or two markets.

Expanding the
World-Ready Lead
Copland technologies are intend-
ed to extend Apple’s lead in let-
ting you develop world-ready
products. Copland will support
world-ready software developed
with any of the following three
technologies:

• The WorldScript technolo-
gies, including the Script Manager
and the Text Services Manager
that work with any release of the
Mac OS since System 7.1. Copland
will support WorldScript to pre-
serve today’s investment in
world-ready Mac OS software.

• The Copland Unicode inter-
faces. These as-yet-unreleased
interfaces will let you implement
some Toolbox functions using
Unicode, the emerging standard
that assigns every character in
every modern writing system a
single 16-bit code, thereby making
the same program code able to
manipulate text in any language.

• Text Objects, the Copland
technology for managing text.
J A N U A R
Text Objects is a high-level appli-
cation programming interface
(API) built on both WorldScript
and Unicode. This API borrows
ideas from object-oriented pro-
gramming that both make it easi-
er to write world-ready applica-
tions and provide powerful new
annotation features.

Additionally, Apple will soon
ship a character-encoding con-
verter, which translates non-Uni-
code character codes to Unicode,
and vice versa. If they incorporate
the converter, applications built
to handle one type of character
encoding can then work with data
created with another character-
encoding scheme. A beta version
of the converter is expected to be
included on the Developer CD by
late Spring 1996.

These technologies will make
it easier for you to develop more
robust, higher performance
world-ready software while also
preserving your current invest-
ment. Current world-ready soft-
ware, developed using World-
Script, will work with Copland—
better than it works with today’s
Mac OS. That’s because the
WorldScript extensions will
become an actual part of system
software, and the parts of the
system that provide world-ready
features will be rewritten in
native PowerPC code. World-
ready software developed with
Text Objects and/or the Unicode
interfaces will run only under
Copland, but it will enable fea-
tures that today would require
you to do a great deal more
programming.

Today’s Macintosh
International Advantage
More about the Copland tech-
nologies in a moment, but first a
little quiz: Which mainstream
personal computer operating
system lets you develop one
application and release it simul-
taneously for all the world’s
languages?
Y 1 9 9 6
Answer (pick one):
(a) Windows 3.x
(b) Mac OS
(c) Windows 95
(d) None of the above
If you picked “Mac OS,” you

were almost right. The correct
answer is “None of the above”; in
all honesty, it simply isn’t possible
now—and probably won’t be in
the forseeable future—to develop
one version of an application and
have it work with every language
system, simultaneously, without at
least some modification. Anyone
who tells you otherwise is proba-
bly trying to sell you something
you don’t want to buy. Today’s
Mac OS, though, gives you the
distinct advantage of letting you
develop one globalized version of
an application that can then be
easily localized for all your target
markets. This advantage is provid-
ed by the many localized versions
of the Mac OS and the WorldScript
technologies available since the
release of System 7.1, including
the Script Manager and the Text
Services Manager.

Other parts of the Mac OS
international advantage are
Apple’s Japanese, Chinese, Kore-
an, Hebrew, Arabic, and Cyrillic
language kits. These are add-ons
to the Mac OS that let customers
use the specific language support-
ed by each kit on top of their sys-
tem’s primary language without
having to install an entirely new
system. Japanese language kits in
the United States, for example, let
customers work with Japanese
software even though they’re
using the U.S. version of the Mac
OS. See the box “How Apple’s
Language Kits Benefit Develop-
ers” (page 8) for more about the
language kits.

The rest of the personal com-
puter world is way behind Apple’s
international solution, and it’s
catching up only slowly. In fact,
one could argue that the transi-
tion to Unicode is one way the
rest of the industry is trying to

6 News6 News
AppleDirections
pull even with the Mac OS. (For
more about Unicode, see the box
on page 7.)

With Windows 95, for example,
you have to maintain three sepa-
rate code bases if you want to be
able to localize your application
for all the world’s major markets.
You have to have one code base
for simple 1-byte languages (for
example, those that use the
Roman writing systems, like Eng-
lish and French), a second for 2-
byte languages (like Japanese and
Chinese, whose complex writing
systems require a 2-byte code for
each unit of text), and a third for
right-to-left writing systems (like
Arabic). This can make mainte-
nance of future software versions
a hassle, to say the least, since
you have to revise each code base
and then relocalize each of them
for your target markets.

With the Mac OS, though, if
you develop your application
according to the WorldScript pro-
gramming conventions—making
it world-ready—a single code base
can be used for localization in all
the world’s markets. For the rela-
tively small incremental invest-
ment of adopting WorldScript,
you can localize and release your
product simultaneously in more
than a single market, and get
additional revenues.

Say your primary market is the
United States; if you don’t adopt
Mac OS international technolo-
gies, you have to reengineer your
product—perhaps significantly—if
it’s to work in Japan, or Israel, or
Russia, or another country that
uses a different writing system.
(Of course, that product is no
worse off than an average Win-
dows program, which generally
requires heavy recoding if it’s to
be released for more than a sin-
gle language system.) However, if
you adopt WorldScript, you can
then localize your product fairly
easily for release in those other
countries, and the investment
you’ve made in developing your
product can result in far greater
return.

Globalization and
Localization
Note the subtle, but important
distinction between globalized,
world-ready software and local-
ized software. Globalized soft-
ware has been prepared with the
potential needs of the world’s
users in mind. It’s been prepared
to be “culturally neutral”—that is,
it uses interface elements that can
be easily understood no matter
where in the world they are
viewed and text strings and menu
items that work well no matter
what language they are translated
into.

A globalized application can be
more easily localized or custom-
ized for a special market since it is
capable of using any script system
and already works, technically
speaking, in the language for
which it is being localized. To
quote Inside Macintosh:Text,
“Globalization involves careful
design and writing of the applica-
tion and its textual and graphic
resources.”

Localized software has actually
been prepared for release in a
specific market. All text in the
software has been translated to
the writing system of the target
market, as has the documenta-
tion. Localization also includes
additional changes that are neces-
sary to make your software cul-
turally acceptable to the target
market.

The WorldScript
Opportunity
Ease of global development
remains one of the clearest Mac-
intosh advantages, and it sounds
as if the adoption of WorldScript
would be an obvious choice,
right? Surprisingly enough,
although many developers take
partial advantage of WorldScript
to ease localization for the large
Japanese market, relatively few
J A N U A R
developers, large or small, take
full advantage of WorldScript to
make their products world-ready.
This means that there remains a
huge opportunity for you if you
want to adopt a truly global Mac-
intosh software development and
publishing strategy. If you do so,
your programming investment
will be much more highly lever-
aged than your competition’s—
and you’ll have a shot at profits
and success that your competi-
tion doesn’t have.

Under Copland, your global
development efforts can become
more robust. You’ll be able to
implement more features than
under the current Mac OS archi-
tecture, and you’ll be able to
implement many features more
easily than today. Before taking a
look at Copland, let’s spend a
minute or two talking about the
existing Mac OS globalization
technologies, because those
technologies will remain a part of
the Mac OS when Copland is
introduced.

The WorldScript
Programming Discipline
Apple uses the term WorldScript
to encompass the technologies
for developing world-ready soft-
ware that became part of the Mac
OS with the release of its own
world-ready version, System 7.1.
WorldScript actually defines a
general programming discipline
or a methodology rather than a
specific API. That’s one reason it
hasn’t been universally adopted;
it’s not a specific set of calls and
routines documented in a volume
of Inside Macintosh that you can
follow like a recipe. Instead, it’s
an approach to programming and
software design—including
human interface design strategies,
specific Mac OS APIs, and just
plain common sense. If you learn
and follow that approach, you can
develop software that’s much
easier to localize for specific lan-
guages than software you’ve
Y 1 9 9 6
developed with a single language
in mind. See “World-Ready Basics”
on page 9 for a list of resources
your programmers and designers
can use to learn the WorldScript
discipline.

In discussing WorldScript, it’s
important to distinguish World-
Script itself from the WorldScript I
and II extensions that control
world-ready software features.
The WorldScript extensions are
important parts of the World-
Script programming method.

By itself, the Mac OS controls
the display, manipulation, output,
and so on of the Roman writing
system. The WorldScript I exten-
sion builds in similar controls for
so-called 1-byte complex script
systems. These are systems, like
Hebrew and Arabic, whose char-
acters can be represented by a
single byte of code, but employ a
complexity beyond that of the
Roman writing system, such as
contextual characters or right-to-
left line direction. WorldScript II
contains the same functions for
so-called 2-byte writing systems—
like Chinese and Japanese—
whose complex characters (or
“glyphs”) need to be represented
by 2 bytes. Apple developed
WorldScript I and II so your soft-
ware could call on their services
instead of your having to imple-
ment similar services separately in
each application.

Script Manager and Text
Services Manager
The way your application calls on
WorldScript I and II services is
through the various Mac OS text-
related managers, the most
important of which for this dis-
cussion are the Script Manager
and the Text Services Manager.
(All the text-related managers are
fully described in Inside Macin-
tosh: Text). The Script Manager is
the standard application interface
to script systems, providing a set
of functions that let an application
get information about its text

News 7
AppleDirections
characters. If you haven’t adopted
it yet, we strongly urge you to do
so next time you revise your
application. Here’s why.

Hard-wiring an application for
a single writing system (Roman,
Arabic, Japanese, and so on) or,
Unicode has become an official indu
word. We all know that in the near fu
personal computer of merit will use
But it seems that only those people w
understanding of how computers wo
text really know what Unicode is, and
industry is moving in that direction.
ing is a brief attempt to help you und
the motivation behind the move to U
won’t make you an expert, but it will
the next time the subject comes up a
party or a meeting.

Unicode is the industry’s effort to
universal character set that encompa
letter and symbol from every imagin
guage. Supported by Apple, Microso
Digital, Hewlett-Packard, Lotus, Nov
others, it’s the first international mul
standard for character sets. Its reper
includes all modern writing systems
archaic ones, as well). Within Unicod
character from each writing system
a single, unique 16-bit code, allowin
to accommodate more than 65,000 d
characters. (The Unicode consortium
mined methods for Unicode to accom
even more characters than that). Thi
that any Unicode-compliant system
recognize the code for each characte

This is a significant change from
situation, in which just about every c
platform uses a different set of code
sent the letters and symbols of differ
systems. The Macintosh, for exampl
byte codes for writing systems that e
letters (like Roman and Cyrillic) and
codes for character-based systems (
nese). This works for exchanging da
similar computers with operating sy
employing the same language system
ferent types of computers employing
languages exchange data, however,
computer can’t interpret the informa
the other computer.

For example, today a Mac OS com

The Transition
instead, building in calls to the
Script Manager are comparable
amounts of work. Hard wiring
may be simpler in the short run,
because it doesn’t require you to
consider how a variety of lan-
guages might handle text; you
J A N U A R

stry buzz-
ture, any

Unicode.
ith a solid
rk with
 why the

The follow-
erstand
nicode. It
 help you
t a cocktail

 arrive at a
sses every
able lan-
ft, IBM,
ell, and
tivendor
toire
 (and some
e, each

is assigned
g Unicode
ifferent
 has deter-
modate

s means
will always
r.
today’s
omputer
s to repre-
ent writing
e, uses 1-
mploy
2-byte
like Chi-
ta between
stems

s. If dif-
 different

usually one
tion from

puter

running the U.S. versio
its best guess at interpr
Japanese system but be
unless it uses special tr
That’s because the code
the U.S. Mac OS system
same thing to the Japan
example of what happe
tries to read Japanese t
home page on the Worl
created using a Japanes
(Go to http://www.fix.co
and click Software Infor
ning a non-Japanese ve
(and you don’t have the
installed), the text looks

$B:#$^GN%\!<%I
$,$($9!”(J $BD6H~No$
$k#4?M$N%&%k%H%
0J>e$N?M5$2x=C$,EP
55!e$;$^7H=D2#L5?
M=Dj2A3J!o(J5800($B
BANDAI Co.,Ltd ,$B1_C

Tomorrow, once the
transition to Unicode, th
Unicode character set, th
read it, and under the sa
see Japanese characters
gook. Any text data will b
type of computer to ano
the writing system native
data will still have the sa
acter from every languag
unique code, and every c
exactly what that code m

The implementation
a fair amount of work fr
companies. The data ty
under Unicode are quite
today’s mainstream env
that major portions of b
and applications will ha
incorporate Unicode. Ac
national evangelist John
an application to Unicod

 to Unicode
only need to think about the lan-
guage you know best. However, if
your application calls the Script
Manager, the application can then
determine what it needs to know
about the writing system being
used, including date and time
Y 1 9 9 6

n of System 7 will take
eting text data from a
 unable to read it,

anslation software.
 used to create text for
 doesn’t mean the
ese computer. For an

ns when a U.S. system
ext, visit Bandai’s Pippin
d Wide Web, which was
e character system.
.jp/bandai/pippin.html
mation.) If you’re run-
rsion of the Mac OS
 Japanese Language Kit
 like this:
%2!<%`$N>o<1$r$/$D
Jl!*(J$B:#2s$OA*$Y
i%R!<%m!<$H#3#0BN

>l7^$9!*(J$B:#$^$GL
T$KF0$-$^$o$k!*(J$B
@GJL!K(JCopyright
+%W%m(J 1995
entire industry makes the
e Bandai site will use the
e Mac OS will be able to

me circumstances, you’ll
 instead of gobbledy-
e transferable from one

ther, and, regardless of
 to either computer, the

me meaning. Every char-
e will have its own
omputer will know
eans.

 of Unicode will require
om many people and
pes for text handling
 different than in
ironments, meaning
oth operating systems
ve to be redone to
cording to Apple inter-
 McConnell, translating
e text strings will be an

amount of wo
680x0 applica
mode with Po

Once that
immensely in
ware develop
least be reada
guage. Howev
even Unicode
ately useful in
be localized fo

In many w
forms what’s
tosh today. U
op Mac OS ap
world-ready a
using Unicod
will make it m
localizable for
OS/2, UNIX®,

Unicode w
international t
supports mult
different coun
encoding will
make it possib
the WorldScri
keep track of t
plex writing sy
guage kits to r
one that your
to supporting
sition of the M
completing th
version of Ma
after Copland.

If you’d lik
we recommen
code consorti
sion 2.0, whic
by Addison-W
version 1.0 vo
can also find
page on the W
.stonehand.co
format and information for text
display and output (that is, print-
ing). Incorporating the Script
Manager makes your application
much more flexible, because it
can then handle any modern writ-
ing system.
rk on the order of redoing a
tion so it can run in native RISC
wer Macintosh systems.
work is done, Unicode will help
 international, cross-platform soft-
ment. The same code base will at
ble by any computer in any lan-
er, it’s not a panacea, because

-based software won’t be immedi-
 any language. It will still have to
r different markets.
ays, Unicode will give other plat-
already available on the Macin-
sing WorldScript when you devel-
plications makes them
nd easy to localize; in the future,
e when developing any application
uch more world-ready and easily
 any platform (Mac OS, Windows,
and so on) and any language.
ill also help the current Mac OS
echnologies. Currently, the Mac OS
iple character-set encodings in
tries. The single, universal Unicode
replace all of these. Unicode will
le for the Mac OS to do without

pt extensions, which currently
he encodings for the world’s com-
stems. Also, you won’t need lan-
ead character sets other than the
system uses. Apple is committed
 Unicode, and it will begin the tran-
ac OS to Unicode under Copland,

e transition with Gershwin, the
cintosh system software coming

e to learn more about Unicode,
d a book prepared by the Uni-
um called Unicode Standard Ver-
h was just about to be published
esley as we went to press. (The
lume is currently available.) You

information at the Unicode home
orld Wide Web (http://www
m/unicode.html).

8 News
AppleDirections
You also need to adopt the
Text Services Manager (TSM) in
your application if you want it to
be world-ready. The TSM man-
ages the communication between
applications and utility programs
that provide text services. Cur-
rently, the most frequently used
text services are input methods,
which convert phonetic or syllab-
ic characters into ideographic or
other complex representations.
Apple has just added three new lan
the language kit product family, wh
markets for some of your localized
have just expanded globally. The la
product family, which was introduc
further extends the Macintosh com
tilingual, international advantage. T
Cyrillic, and Arabic Language Kits h
the Japanese and Chinese Languag
December, with Korean soon to fol

The kits let users enhance their
with additional language capabilitie
them input, edit, and print text in a
writing systems (or languages), us
ready software, whether it’s a local
tion, or a multilingual application th
port for 2-byte characters, right-to
both. Also, customers can add one
writing systems of their choice to t
writing system in use with their ve
Mac OS.

The kits are intended for use m
cific groups of customers in the fo
areas:

• in education—by students lea
language, and by their teachers an
labs

• in expatriate communities—fo
Japanese natives living in the Unite

• in small businesses that do m
publishing, prepare subtitles, or un
translation

• in the software development c
by developers who need assistance
international development efforts

The language kits expand the bu
tunity for localized applications. Sinc
guage kits ship worldwide, the mark
Korean application will no longer be

How Apple’s L
Input methods let you use a stan-
dard keyboard to generate the
thousands of characters used by
some languages.

Applications using Japanese,
Chinese, Korean, and other 2-byte
writing systems require the use of
an input method. There are two
basic types of input methods for
2-byte systems: floating-window
input and inline input. Floating-
window input methods require
J A N U A R

guage kits to
ich means
 applications
nguage kit
ed in 1993,
puter’s mul-
he Hebrew,
ave joined
e Kits in
low.
 systems
s that let
dditional
ing world-
ized applica-
at has sup-

-left text, or
 or more
he “native”
rsion of the

ainly by spe-
llowing

rning a new
d language

r example,
d States
ultilingual
dertake

ommunity—
 in their

siness oppor-
e the lan-
et for, say, a
 limited to

Macintosh customers in
cation can run either on
ships with Macintosh co
any Macintosh, anywher
running the Korean Lang

Additionally, the kits
for you to test globalized
ware. You can run the la
your Macintosh system—
7.1 or later—to find out
work well with a given la
you don’t have to install
OS for that language ove
tain separate hardware d
languages. (Final testing
the fully localized enviro

The language kits’ m
they allow the Macintosh
one language without sa
capabilities. For example
choose between running
ese version of the Mac O
they can have both on a

Each kit includes fon
and language resources
language used by the S
tells the Macintosh how
one script. In addition,
guage register that allo
localized applications u
guage (actually the font
menus, dialog boxes, a
the user interface, rega
not the region code in t
been correctly set. Whe
application, you’re supp
code to indicate the lan
for; the region code tell
the application’s user in
language.

anguage Kits B
you to create text strings in a spe-
cial “floating window” and then
transfer the text to the place
you’d like it to appear, whether
it’s in a dialog box or the applica-
tion window. Inline methods let
you type text strings directly
where you’d like them to go.
Before System 7.1 and the Text
Services Manager, the Mac OS
supported only floating-window
methods; now, with the TSM, Mac
Y 1 9 9 6

 Korea. A Korean appli-
the Korean system that
mputers in Korea or on
e in the world, that is
uage Kit.

provide an efficient way
 and localized soft-
nguage kits on top of

as long as it’s System
 if your product will
nguage. That means
 the version of the Mac
r your system or main-
edicated to specific
 is recommended in
nment.)
ain contribution is that
 to handle more than
crificing any other
, users won’t have to
 an English or a Japan-
S; with a language kit,

 single system.
ts, input methods,
 for the particular
cript Manager, which
 to handle more than
the kits contain a lan-
ws the Mac OS to open
sing the correct lan-
s for that language) in
nd other elements of
rdless of whether or
he 'vers' resource has
n you localize an
osed to set the region

guage you’re localizing
s the system to open
terface in that local

The dem
by the fact t
phy do not s
only one wri
true in Europ
in the United
sus Bureau,
United State
English at ho

People w
Roman writi
where anoth
main target
market—mo
Apple’s lates
speakers liv
roughly 1 m
United State
the rest of A
Australia, an
writing syste
now includin
Japanese, H
Cyrillic, and
used by sign
their native r

To work
ware must b
WorldScript
layout/typog
doesn’t need
language kit
savvy. The k
or your worl
another soli
WorldScript

[Editor’s not
article that a
of Apple Dir

enefit Develope
OS customers can use the far
more convenient inline input
methods. If your application is
going to let your customers use
inline input—and if it’s going to
be localizable for Japan, the sec-
ond largest Macintosh market—it
will need to incorporate the Text
Services Manager.

There are two levels of TSM
support; the first level is called
TSM-aware. With very little
and for the language kits is driven
hat all residents of a single geogra-
peak only one language (or use
ting system). This has long been
e and is becoming increasingly so
 States. According to the U.S. Cen-

 1 out of every 14 people in the
s speaks a language other than
me.

ho speak languages that use non-
ng systems, but live in a region
er writing system is used, are the
for language kits. The largest such
re than 5 million, according to
t estimates—is made of Chinese

ing outside China. This includes
illion Chinese speakers living in the
s, 500,000 in Japan, 2 million in
sia, 500,000 in Canada, 250,000 in
d 1 million in Europe. All the other
ms supported by language kits—
g modern and traditional Chinese,

ebrew, Yiddish, Arabic, Persian,
soon Korean character sets—are
ificant numbers of people outside
egion.
with the language kits, your soft-
e prepared according to the
 discipline (or QuickDraw GX line
raphy methods). Your product
 to be localized to work with the

s; it just needs to be WorldScript-
its greatly increase the market f
d-ready applications, giving you
d business reason to adopt
.

e: This sidebar is based on an
ppeared in the August 1993 issue
ections.]

rs

News 9
AppleDirections
knowledge of Japanese or other
2-byte systems and a few dozen
lines of code, you can make your
application TSM-aware. This
means that inline input methods
will work properly with the ele-
ments of your application con-
trolled by TextEdit, such as dialog
boxes. If you don’t make your
application TSM-aware, Japanese
(2-byte) users won’t be able to
use the latest inline input meth-
ods when they save a file, for
example; instead, they might have
to use Roman (1-byte) filenames.

If your application requires
heavy use of text—for example, if
it’s a word processing or desktop
publishing product—it will have
to be TSM-savvy, which is the sec-
ond level of TSM support. TSM-
If you want to make your application
ready and easily localizable for the w
major personal computer markets, h
general steps to follow. This is a gro
simplification, intended to get you s
you’re not already familiar with Wor
and software globalization. However
study the relevant documentation cl
be well on your way to understandin
need to do to develop world-ready s
(Unless otherwise noted, all the doc
mentioned here are available from A
page 36 for APDA ordering informat

1. Adopt the Script Manager. Thi
that your application can handle virt
modern writing system (for example
Arabic, Cyrillic, and Japanese) throu
WorldScript I and II extensions. The
Manager is documented in Inside M
Text.

2. Adopt the Text Services Manag
At least make your application TSM-
means that any element of your app
uses TextEdit (such as a dialog box)
the services of TSM input methods f
writing systems. If your application
heavy use of text, make it TSM-savv
text from input methods appears pro
in the application window itself. Insi
tosh: Text contains what you need to
about the TSM.

World-Ready B
savvy applications support the use
of inline input methods in the
application window itself. The
amount of work it takes to make
an application TSM-savvy depends
on the application itself; applica-
tions that support wide varieties
of text formatting, styles, and so
on, can require a great deal of
work.

If you go to the trouble to
make your application TSM-savvy,
it can handle text from any TSM
input method, for any complex
writing system; you only have to
do the text services part of your
programming once. If, on the
other hand, you hard-code your
application to handle only a spe-
cific input method for the Japan-
ese character set, and you later
J A N U A R

 world-
orld’s
ere are the
ss over-
tarted if
ldScript
, if you
osely, you’ll
g what you
oftware.
uments
PDA; see
ion.)
s will mean
ually any
, Roman,
gh the
 Script
acintosh:

er (TSM).
aware; this
lication that
 can use
or complex
also makes
y so that
perly with-

de Macin-
 know

3. Make appropriate
text-management resou
documented in Inside M
in the technical note “OV
tion Checklist.”

4. Use QuickDraw GX
for text display. If you d
work with almost any ch

5. Read the Macintos
Guidelines, especially C
Design Considerations,”
ware Localization, to be
ready for localization in
find them both on the In
ftp.info.apple.com/Apple
oper_Services/Technica

6. Obtain the prelimi
Text Objects, the Coplan
Apple’s technology of ch
world-ready software, a
what Text Objects can d
You can find it on the 19
opers Conference Techn
have that, we’ve posted
Directions Web site (htt
appledirections/adextras

7. Watch Apple Direc
about the release of the
Copland.

8. Take a look at the
character-encoding con

asics
want to release that application
for the Chinese and Hebrew mar-
kets, for example, you then have
to recode your entire application
twice, once for each market.

Other Aspects of World-
Script Programming
Adopting the Script Manager and
the Text Services Manager are the
technical cornerstones to making
your application world-ready.
There are other aspects to the
WorldScript programming disci-
pline that you’ll also need to fol-
low if you’re to make your soft-
ware world-ready. As I said earlier,
WorldScript is as much an overall
approach to application design as
it is a technical solution. It in-
cludes the kinds of programming
Y 1 9 9 6

use of miscellaneous
rces. Some of these are
acintosh: Text; others
 20—Internationaliza-

 instead of QuickDraw
o, your application will
aracter set.
h Human Interface

hapter 2, “General
 and the Guide to Soft-
 sure your application is
any language. You can
ternet at
.Support.Area/Devel-

l_Documentation.
nary documentation for
d API that will become
oice for developing

nd study it to decide
o for your application.
95 Worldwide Devel-
ology CD; if you don’t
it for you at the Apple
p://dev.info.apple.com/
/adextras.html).
tions for more news
Unicode interfaces for

beta version of the
verter for converting

between Unic
determine wh
your applicat
released on t
next few mon
Copland.

9. Read u
understand w
transition; se
“The Transiti

10. Consi
edge of one o
company lac
Roman; com
like Japanese
help you kee
mind whenev
help assure t
in one of the

11. If you
your own loc
a localizer for
Europe, see A
companies [p
The following
mend localiza

• for Japa
AppleLink, or

• for the r
(DHARMA.M
.moses@app
techniques you’ll learn in Inside
Macintosh: Text about the Script
Manager, the TSM, and several
other text-management technolo-
gies.

WorldScript also includes an
overall approach to designing
your application, one that keeps
in mind the needs of the various
cultures that one day might be in
the market for your product. To
begin to familiarize yourself with
this kind of cultural sensitivity,
you’ll want to read Apple’s Guide
to Software Localization and
the sections in the Macintosh
Human Interface Guidelines that
pertain to international software,
especially Chapter 2, “General
Design Considerations.” The Mac-
intosh Technical Note “OV 20—
ode and non-Unicode strings to
ether you want to incorporate it in

ion. The converter, which will be
he Developer CD Series within the
ths, will be a standard part of

p on Unicode so that you can
hat you’ll need to do to make the

e the resources listed at the end of
on to Unicode” (page 7).
der hiring someone with knowl-
f the character-set types that your

ks expertise in (simple 1-byte, like
plex 1-byte, like Arabic; 2-byte,
, Chinese, and Korean). This will

p world-ready software design in
er you plan new releases, and
hat your software can at least run
 other environments.
 don’t have the resources to do
alization in your target markets, find
 that market. If you develop for
ppleLink for a list of localization
ath: Europe:Selling Into Europe].
 Apple employees can also recom-
tion companies for your markets:
n, Takeuchi-san (Takeuchi2 on
 takeuchi2@applelink.apple.com)
est of Asia, Moses Dharma
OSES on AppleLink, or dharma
lelink.apple.com)

10 News
AppleDirections
Internationalization Checklist”
also contains technical and non-
technical details you’ll need to
think about when you develop
world-ready software. (See
“World-Ready Basics” for infor-
mation on these and other
documents.)

When it comes to developing
world-ready software, there’s also
no substitute for having the right
people on hand to help. It’s a real
plus if you can have someone on
your staff with expertise in at least
one of the writing systems you
hope to target. Say that you’re
most familiar with English and the
Roman writing system. It’s a good
idea to have someone on staff
who, at a minimum, has expertise
in either 2-byte systems (like
Korean, Japanese, and Chinese)
or the needs of complex 1-byte
systems (Arabic, Hebrew, and so
on). This person can review your
early design decisions to be sure
that, when you try to localize your
product for its new markets and
writing systems, it will at least
work well with the one in which
they have expertise.

It’s probably a luxury for most
of you to employ the number of
people needed to cover the
world’s major writing systems. By
hiring someone who is expert in
at least one of them, you’ll have a
leg up on the globalization/local-
ization process, because you’ll be
sure to consider world-ready
design issues when you develop
your products. For languages
your staff doesn’t cover, you can
always find consultants and local-
ization companies to help. (See
“World-Ready Basics” for informa-
tion on finding that sort of help.)

Another technology you need
to pay attention to in developing
world-ready software is Quick-
Draw GX. If you haven’t yet
adopted QuickDraw GX, the
demands of globalization give you
one more reason to do so. That’s
because QuickDraw GX (unlike
the earlier QuickDraw) works
with any character set, and has
already been globalized. In fact,
QuickDraw GX supports Unicode.
If you display text with
QuickDraw GX instead of with
QuickDraw, you almost get sup-
port for complex 1-byte and 2-
byte languages for free. If you use
the earlier version of QuickDraw,
your application will need to
make many more calls to the
Script Manager to display text
from other writing systems.

What Copland Adds
to the Picture
Under Copland, all the technolo-
gies just described will work,
meaning you can continue to
capitalize on the world-ready soft-
ware you’ve already developed.
That’s the good news. The better
news is that current WorldScript
software will work even better
under Copland, for two main rea-
sons: First, instead of being exten-
sions to the system, WorldScript I
and II will be part of the core sys-
tem, so there won’t be any system
patching under Copland to pro-
vide world-ready features. Sec-
ond, more than 90 percent of
system software, including all
parts that control international
features, will be rewritten in
native PowerPC code. (Note that
the WorldScript I and II exten-
sions have been fully native since
the release of System 7.1.2.)
These two changes will result in
greater stability and performance.

Additionally, as I mentioned
already, Apple will release several
new technologies between now
and the release of Copland that
will be part of the Copland ver-
sion of the Mac OS. One of the
main reasons behind the new
technologies will be to support
the industry’s transition to Uni-
code. Similar to the way Copland
will begin the transition to pre-
emptive multitasking by enabling
some functions to be run as pre-
emptive tasks in their own pro-
tected memory space, Copland
J A N U A R
will begin to introduce Unicode
to the Mac OS. It’s expected that
the transition to both Unicode
and preemptive multitasking will
be completed with the next ver-
sion of the Mac OS—Gershwin.

One Mac OS technology that
will help ease the transition to
Unicode is the character-encoding
converter. It will be released sepa-
rately before Copland but will
become part of the new Mac OS.
The converter contains two mod-
ules, one that converts Unicode
into non-Unicode and one that
works the opposite way. If you
incorporate the first module into
your Mac OS application, it will be
able to convert Unicode strings
into the character encoding used
in the application so that your
application can “understand” Uni-
code. Similarly, if you incorporate
the converter into a Unicode
application—say, one that’s creat-
ed under Windows NT that you’re
porting to the Mac OS—it will
“understand” and be compatible
with the Mac OS character codes.

Using the Copland Unicode
interfaces, which won’t be avail-
able until later in 1996, you’ll be
able to write Unicode strings to
call some—but not all—Toolbox
functions. The interfaces will let
you work directly with Unicode
strings, so you can actually pro-
gram parts of your application
using the Unicode character set.
Coding with Unicode, however,
can be slow going and tough
work, so many of you won’t be
interested in the interfaces.

There is a Copland technology
for letting the Mac OS work with
Unicode strings that, in typical
Macintosh fashion, will make life
much easier for you. That’s Text
Objects, the new Copland text-
management API that will allow
the Toolbox to handle text from
different encodings, including
Unicode. Text Objects is built on
top of both Unicode and World-
Script, giving you a high-level way
of managing text, and the entire
Y 1 9 9 6
Copland Toolbox will have Text
Objects interfaces.

As I’ve already said, Copland
will support existing WorldScript
technologies to be sure your
existing investment in develop-
ment is preserved. Apple expects,
however, that the more robust,
object-oriented Text Objects
method of supporting multilin-
gual text, using multiple encod-
ings, will eventually make the
existing methods for software
globalization obsolete. Text
Objects gives you a much differ-
ent way of developing world-
ready software, one that will take
some learning on the part of your
programmers. However, before
using the older WorldScript tech-
nologies or the Unicode inter-
faces, you’ll want to ask yourself,
“Can Text Objects do what I
want?” The answer will often be
“yes,” because it does a lot.

In addition to identifying the
encoding of a text string, Text
Objects will let you bundle other
information with the raw text;
although there’s no limit to the
types of information that can be
bundled, Apple envisions Text
Objects to be used for data relat-
ed to the text itself, such as the
language it’s in, pronunciation
data, the actual sound made
when someone speaks the text,
or information that can be used
to sort the text.

For example, Text Objects can
come in handy if you want your
application to be able to sort files
in languages without alphabets.
Today, if you open a folder full of
files with names that were created
with the Japanese character set,
there’s no convention for sorting
them by name. Since Japanese
doesn’t employ an alphabet,
there’s no such thing as alphabeti-
cal order. However, if the phonetic
pronunciation of each name is
attached to the text, you can sort
them according to pronunciation,
enabling Japanese users to provide
more order on their desktops.

News 11
AppleDirectionsAppleDirections
previously known as the Com-
mon Hardware Reference Plat-
form (or CHRP), which Apple
released jointly with IBM and
Motorola

• the Newton 2.0 operating
system—which won a Best of
COMDEX award—and two new
Newton partners

• OpenDoc for Mac OS 1.0
and the OpenDoc for Mac OS
Software Development Kit (SDK),
which contains the completed

Apple News

COMDEX
continued from page 1
OpenDoc software as well as sam-
ple code and tools for develop-
ment of OpenDoc-based solu-
tions

• a prerelease version of
Apple’s innovative SD-ROM
(super density–read only mem-
ory) drive; SD-ROM discs can
store up to 15 times as much data
as current CD-ROM discs

• prototype PC Compatibility
Cards with Pentium and Cyrix 586
microprocessors running on a PCI-
based Power Macintosh system

• the Apple Internet Server
Solution, which now includes
Adobe™ PageMill, Adobe’s
easy-to-use Web page authoring
software
J A N U A R
Details about these announce-
ments and demonstrations follow.

PowerPC Platform
Specification
Perhaps the most eagerly awaited
announcement was the availabili-
ty of the specification formerly
known as CHRP, the common
hardware reference platform built
around the PowerPC micropro-
cessor. Now called the PowerPC
platform, the specification
defines a unified 32-bit personal
computer architecture that will
make it easier for system vendors
to design computers capable of
running multiple operating sys-
tems, including the Mac OS, AIX,

Y 1 9 9 6
OS/2, Windows NT, NetWare, and
Solaris.

The specification provides a
variety of benefits for developers:
Mac OS software vendors will be
able to market their products to a
broader market, including cus-
tomers who buy PowerPC proces-
sor–compliant systems primarily
to run non-Macintosh software.
Additionally, the specification will
enable a great many more soft-
ware developers—on whichever
OS they prefer—to take advantage
of the superior performance pro-
vided by RISC PowerPC micro-
processors, including the floating-
point unit. Additionally, vendors
of PowerPC processor–compliant
Here are a few other examples
of how Text Objects can be used:

• In handwriting recognition
systems, you can store the “ink”
version—what the user actually
writes on the screen—with the
cleaned-up text.

• You can create a text string
with information for two writing
systems, so the same string can
be opened in two languages.

• You can store the informa-
tion contained in a file in the file-
name itself.

Apple shipped preliminary doc-
umentation about Text Objects on
the 1995 Worldwide Developers
Conference Technology CD, and
will continue to provide informa-
tion about Text Objects long before
the actual release of Copland. In
other words, you can start getting
ready for Text Objects, and figure
out how you can use it today, and
have world-ready Text Objects soft-
ware ready to go by the Copland
ship date. (The preliminary Text
Objects documentation is also
available on the World Wide Web;
see “World-Ready Basics” for its
location.)

Text Services Manager
Under Copland
One part of the Copland interna-
tional story will require a very few
of you to undo and redo software
you’ve created under the System
7 architecture. That’s the new
Text Services Manager. The few of
you who’ve already developed
TSM services—primarily input
methods—will have to rewrite
them for Copland because of the
new process model it will intro-
duce. However, Apple thinks it
will be more than worth it
because of the improvements
being made to the manager. The
rest of you will have still more
reasons to adopt the Text Services
Manager in your products. (If
you’re among the elite group of
input method developers, Apple
will be presenting briefings to
help you redo your software so it
works with Copland. For informa-
tion on how to take part in a brief-
ing, contact Apple’s international
evangelist, John McConnell, at
J.MCCONNELL if you use
AppleLink, or j.mcconnell@
applelink.apple.com if you use
another e-mail service.)

Under the current Mac OS, the
TSM is a text services manager in
name only; it’s really mostly an
input method manager. Broadly
defined, a true text service
replaces one chunk of text with
another chunk of text. So, text
services could include spell
checking, in which improperly
spelled text is replaced by proper-
ly spelled text; grammar checking,
in which grammatically poor text
is replaced by grammatically
sound text; or any type of transla-
tion. The Copland TSM will sup-
port all those services, and any
other type of text service you
might imagine.

One interesting application of
the new TSM might be a service
that replaces shorthand with the
text it represents. A legal secre-
tary might record a deposition
using shorthand on a Newton
device, and then use a specially
created TSM service to “translate”
the shorthand symbols into the
text they stand for, saving the
time it might normally take to
type the deposition.

Make Your Software
Ready for the World
That, in a rather large nutshell, is
what you’ll need to know to glob-
alize your software, and to take
advantage of the increased rev-
enue opportunities available to
world-ready products, now and
after the release of Copland. Of
course, you must still localize
your software, or have one of
many available localization com-
panies do the work for you. (See
“World-Ready Basics” to find out
how you can get in touch with
localization companies in your
target markets.) If you go to the
trouble to learn the WorldScript
programming discipline outlined
here, however, localization will be
far easier and less expensive than
if you develop with only one geo-
graphical region in mind.

Learning WorldScript and the
Mac OS international technolo-
gies—today’s and tomorrow’s—
may take some doing, but it’s less
work than the reengineering it
takes to move an application
that’s hard-coded for one writing
system into a new writing system.
The incremental costs of adopting
WorldScript are leveraged into a
product that can be simultaneous-
ly localized and sold in every Mac-
intosh market around the world.
If you haven’t made your software
world-ready yet, Copland tech-
nologies will give you even more
reason to do so. Remember that
adopting WorldScript and the
Copland international technolo-
gies will give you the world—liter-
ally on a text string. ♣

AppleDirections
12 News

AppleDirections
hardware systems will be able to
create a single product that can
reach multiple OS markets.

The specification details
input/output interfaces, bus stan-
dards, and other system-level func-
tional elements that hardware
vendors will need to employ to
build PowerPC platform–compli-
ant systems—ranging from porta-
bles to high-end servers—based
on the RISC PowerPC processor.
The PowerPC platform specifica-
tion uses widely available, industry-
standard hardware components,
which should result in lower-cost
systems that can be readily manu-
factured by a variety of vendors.

Apple, IBM, and Motorola have
already announced plans to deliv-
er PowerPC platform–compliant
systems, along with Canon,
DayStar Digital, FirePower Sys-
tems, IPC Technologies, Pioneer,
PowerComputing, Umax, and
Zenith. The first PowerPC plat-
form systems are expected to ship
in the second half of 1996.

You can obtain the specifica-
tion from Apple’s World Wide
Web site (http://chrp.apple.com),
or by calling Apple (800-251-
8662), IBM (708-296-6767), or
Motorola (512-434-1502).

Newton 2.0 And New
Newton Partners
As we reported last month,
Apple previewed the Newton 2.0
operating system at Comdex.The
new version of the Newton OS
includes significant enhance-
ments, including improved hand-
writing recognition and commu-
nication features, more built-in
applications, and more efficient,
less-expensive development tools;
for the complete story, see “New-
ton—Surviving and Thriving at
Age 2” in the the December 1995
Apple Directions.

What we didn’t know yet was
that Newton 2.0 also garnered top
honors at the show, receiving the
Best of COMDEX award in the
operating system category. The
coveted Best of COMDEX awards,
presented annually by Byte maga-
zine, recognize unique, technical-
ly innovative and cutting-edge
new computer products at the
show.

Additionally, Apple
announced two new Newton
technology licensees in Las
Vegas: Schlumberger Electronic
Transactions and Digital Ocean.
Schlumberger Electronic Transac-
tions, a division of Schlumberger
Ltd., plans to use Newton tech-
nology in integrated “smart card”
systems, which are designed to
automate medical transactions.
Digital Ocean, a developer of
wireless connectivity products
for Macintosh and Newton sys-
tems, plans to incorporate New-
ton technology with Global Posi-
tioning System (GPS) and
wireless communication features
in specialized applications in
the manufacturing, transporta-
tion, health care, and services
industries.

Both licensees should further
expand the market for Newton
software products. The Newton
MessagePad is currently the
leader in the personal digital
assistant market, holding a 58
percent share in 1994, according
to BIS Strategic Decisions.

OpenDoc for MacOS
Introduction: More
Than 29,000 Served
Another major milestone
announced at COMDEX was the
availability of OpenDoc for Mac
OS 1.0 and the OpenDoc for Mac
OS SDK at the Apple Web site;
again, full coverage of the
announcement can be found in
the December Apple Directions
(see “OpenDoc 1.0 for Mac OS
Goes Golden Master”).

We’d say the release has been
an overwhelming success: In the
19 days after the SDK was posted
on the site (which happened
November 10), 29,480 different
users viewed information there,
according to statistics tracked by
the OpenDoc Web site server.
J A N U A R
Also, there were more than 48,000
requests to download documenta-
tion, software, and other parts of
the OpenDoc product release
from the site. In those 19 days,
more than 55 gigabytes of data
were exchanged between the
server and Web users. In case you
haven’t downloaded your copy,
you can find it on the Web at
http://www.opendoc.apple.com.

Another highlight of the
OpenDoc 1.0 release was Claris
Corporation’s announcement
that it will join Component Inte-
gration Laboratories (CI Labs),
the vendor-neutral industry con-
sortium promoting OpenDoc
development, and deliver its first
OpenDoc-based products in
1996, joining the 300-plus devel-
opers who have already commit-
ted to shipping OpenDoc prod-
ucts. Said Guerrino De Luca,
president of Claris Corporation,
“Claris intends to ship one or
more OpenDoc-compliant prod-
ucts in 1996 and is evaluating
opportunities to add OpenDoc
container and component capa-
bilities across our product line.”

SD-ROM: The Multimedia
Disc of the Future
Apple also announced—and
demonstrated—its commitment
to the new super density (SD)
disc standard, which was
announced by the SD Alliance
earlier in the fall. Apple represen-
tatives showed a Toshiba SD-ROM
drive connected to a Power Mac-
intosh 6220 playing a disc that
combined the content of six CD-
ROM titles.

The new SD-ROM discs can
store about 8 to 15 times more
than today’s CD-ROM format. An
important feature of SD-ROM
drives is that they can play exist-
ing CD-ROM discs and music
CDs, so you’ll be able to continue
to sell CD-based content and soft-
ware that you’ve already devel-
oped once the new standard is in
place. Apple intends to include
the new devices with Macintosh
Y 1 9 9 6
systems as soon as commercial
SD-ROM drives are available in
sufficient quantity.

It’s expected that SD will
become a new distribution
method for movies without the
degradation of quality suffered
with traditional video tape. SD
will also result in more
compelling multimedia titles, with
faster, smoother playback of
video, providing consumers with
a more TV-like interactive experi-
ence. Market research firm
InfoTech of Woodstock, Vermont,
projects that worldwide unit sales
of SD drives based on a 4.7 giga-
byte format will exceed 2 million
across all applications in 1997, the
first full year they’ll be available.
InfoTech forecasts that 1.2 million
high-density drives for personal
computers will sell that year.
InfoTech expects that in the year
2000, approximately 39 million SD
drives will be sold, accounting for
nearly one-third of all CD-ROM
drive sales that year.

Prototype Pentium PC
Compatibility Cards
At COMDEX, Apple also demon-
strated a Power Macintosh sys-
tem with the PCI (Peripheral
Component Interconnect) bus,
running prototype PC Compati-
bility Cards featuring Pentium
and Cyrix 586 processors. The
prototype PC Compatibility
Cards showed that PCI-based
Power Macintosh systems have
the potential to run Macintosh,
DOS, and Windows software,
providing wider compatibility
than any other personal comput-
er system. Apple currently pro-
vides DOS and Windows com-
patibility through 486DX2/66-
based DOS Compatibility Cards
on selected models of its Power
Macintosh, Macintosh LC, and
Macintosh Performa lines of per-
sonal computers.

According to a 1995 Apple
Early Buyer Study reported on in
the August 1995 Apple Directions,
Apple’s most popular cross-

AppleDirections
News 13

AppleDirections

Units shipped Market share (%)

(000s)

1 Apple 795 13.9%

2 Packard Bell 705 12.4%

3 Compaq 670 11.7%

4 IBM 490 8.6%

5 Hewlett-Packard 305 5.3%

Dataquest data

Units shipped Market share (%)

(000s)

1 Apple 788 13.1%

2 Compaq 727 12.1%

3 Packard Bell 711 11.8%

4 IBM 493 8.2%

Top Five Q4 ’95 U.S.
Personal Computer Vendors

IDC data
platform system, the Power Mac-
intosh 6100/66 DOS Compatible,
has attracted a large number of
customers replacing an x86-based
PC. Additionally, DOS-compatible
Macintosh systems offer Windows
95 users an ease-of-use advantage
over Pentium-based and other
Intel x86-based systems: They
enable users to switch easily
between Windows 95 and Win-
dows 3.x. Most PCs won’t let cus-
tomers maintain both versions on
the same system.

Adobe PageMill
Bundled With Apple
Internet Servers
Last but definitely not least, Apple
announced that its Internet
servers are becoming more pow-
erful with the addition of
PageMill, Adobe’s new Web page
authoring tool. The software is
now being bundled with the
Apple Internet Server Solution,
which consists of a PowerPC
processor–based Workgroup
Server 6150/66, 8150/110, or
9150/120 and a CD-ROM. The
package also includes WebSTAR
Web server software from Star-
Nine Technologies, Inc., and the
Netscape Navigator Web Browser
from Netscape Communications
Corp. PageMill lets you create,
edit, and update Web pages with-
out experiencing the complexities
of HTML (Hypertext Mark-up
Language).

With PageMill, you can drag
and drop text and images, apply
styles, and import graphics and
textures into a Web page as well
as easily create links between Web
pages. If you bought one of
Apple’s Internet Server Solutions
after September 1, 1995, you can
receive a copy of Adobe PageMill
for only the cost of shipping and
handling by calling 408-862-3385
(qualified customers only,
please!).
Apple Ranks #1

in Personal

Computer Sales

in the U.S.

Apple received more good market
share news at COMDEX: Accord-
ing to announcements made
there by two respected research
firms, Apple shipped the most
personal computers in the United
States in its fourth fiscal quarter of
1995, or Q4 ’95 (that is, July
through September).

Both Dataquest, Inc., and
International Data Corporation
(IDC) put Apple Computer, Inc.,
in first place in their quarterly
surveys of computer sales in the
United States for the period.
Apple topped all competitors;
Macintosh computers made up
J A N U A R

5 Hewlett-Packard 32
over 13 percent of all computers
sold in the United States during
the quarter. Dataquest pegged
market share at 13.1 percent,
while IDC estimated share at 13.9
percent.

According to the IDC data,
Apple gained market share
between Q4 ’94 and Q4 ’95. Mac-
intosh computer sales grew faster
than the overall industry between
the two quarters. While overall
U.S. computer sales increased 21
percent—from 4.7 million to 5.7
million—between Q4 ’94 and Q4
’95, Macintosh unit sales
increased 25 percent—from
637,000 to 795,000.

“Contrary to popular belief,
Apple is not losing market share,”
said Eric Lewis, IDC’s manager of
Personal Systems Research and its
principal Apple analyst. “They
have maintained market share so
far this year, and our projections
are that the company will gain
Y 1 9 9 6

8 5.4%
share in Q1 ’96 [October through
December]. Sales to the educa-
tion market and introduction of
new PowerPC processor–based
systems for both homes and
schools contributed to their
strong showing in Q4 ’95, which
is up 25 percent over the same
period a year ago.”

“Apple’s strategy of focusing
on its key markets appears to be
paying off,” said Kimball Brown,
Dataquest’s vice president of Per-
sonal Computers. “Strong educa-
tion sales and high demand
among consumers pushed Apple
into first place in the United
States, and helped grow the com-
pany’s market share worldwide.
We expect a very strong showing
in the current quarter and holiday
quarter as well, as Apple enters
the quarter with their guns
loaded.”
New Technotes

Give Developers

More Options

If you develop for the Mac OS
platform, you’re probably familiar
with the Macintosh Technical
Notes, which are technical docu-
ments that supplement the
Inside Macintosh technical doc-
umentation. To give you better
information in the formats that
you prefer, Apple has replaced the
Macintosh Technical Notes with a
new form of supplementary tech-
nical documentation, called (to
distinguish them from the old Mac-
intosh Technical Notes) Technotes.

Existing Macintosh Technical
Notes will continue to be available
on the Developer CD Series and
the World Wide Web, but new
material will appear as Technotes.

Technotes will be available in
more locations:

• You can order a yearly sub-
scription to printed Technotes

AppleDirections
14 News

AppleDirections
through Field Copy and Printing
(for details, call 415-323-3155 or
send e-mail to AppleLink address
FIELDCOPY or Internet address
fieldcopy@applelink.apple.com).

• You can access Technotes
through the World Wide Web (at
location http://dev.info.apple
.com/technotes/Main.html).

Two new things about Tech-
notes are worth noting. First, you
can access the Technotes on the
World Wide Web through a pow-
erful new search engine. This
feature will help you get to the
documentation you need as
quickly as possible. Second, Apple
now welcomes Technote contri-
butions from developers like you.
(Technotes are best suited for
shorter contributions; Apple
Directions’ sibling publication,
develop magazine, remains the
premiere publication medium for
in-depth technical articles of
interest to Mac OS developers.)
For details on how to contribute a
Technote, see the Technote Web
==> ==> ==> ==

==> ==> APPAPP
==> ==> ==> ==

At-a-gla
Apple Dir

Sent t

Apple Directions Express is the
Apple Directions. At least every
moment news and competitive

Tired of searching the ’net for
Internet locations for complete
nities, and other subjects that

SUBSCRIBE now to receive thi
Send e-mail to adirections@th
In the subject field of your me
page (at the location mentioned
earlier).

• You can also find Technotes
on the Developer CD Series from
Apple; they are collected quarterly
on the Reference Library Edition.

In addition, you will be able to
read Technotes in one of three
formats: Adobe Acrobat, Claris-
Works 4, and QuickView (the file
format used by Apple’s Macintosh
Programmer’s Toolbox Assistant).
o

A

a

s

s

Chinese Dictation

Kit Wins COMDEX

Asia “Best of

Best” Award

Apple Computer, Inc., recently
introduced the Apple Chinese
Dictation Kit, a new product that
converts Mandarin (Putonghua)
speech into simplified or tradi-
J A N U A R

> ==> ==> ==> ==> ==>

LE DIRECTIOLE DIRECTIO
> ==> ==> ==> ==> ==>

nce, up-to-the-momen
ections Express–the A
 you instantaneousl

 official online business bulletin f
 other week, we send you a single
 analysis from inside and outside

pple-related material? Apple Dire
 information about new Apple pr
re important to the business of M

 valuable service. THERE’S NO C
ing1.info.apple.com.
sage, type the string “subscribe <
tional Chinese text. The product,
which works on a Chinese-lan-
guage-equipped Power Macintosh
computer with at least 4 MB of
free memory, allows users to
enter text about five times faster
than the most popular keyboard-
based input methods. Because of
the product’s ease of use, product
design, and usefulness, it was
awarded both the “Best Software
Product” and the “Best of the
Best” (best overall product)
awards at COMDEX Asia in
November.

The Apple Chinese Dictation
Kit consists of two components:
the Apple Chinese Dictation Kit
software and a special micro-
phone, called the Apple Dictation
Microphone. Users then train the
software to recognize their voices
by reading several pages of text
into the microphone. After the
software has analyzed the voice
recording and created a user pro-
file file, a user can then dictate to
the computer by speaking one
Y 1 9 9 6

 ==> ==> ==> ==> ==> =

NS EXPRESNS EXPRES
 ==> ==> ==> ==> ==> =

t business news from
pple Online Business

y—and free—over the

rom Apple Computer, Inc., and th
, concise e-mail providing you wit
Apple.

ctions Express not only gives you
oducts and technologies, strategic
acintosh development.

HARGE!

your real name>”.

We’ll se
phrase at a time.
The Apple Chinese Dictation

Kit can recognize approximately
350,000 phrases, and users can add
phrases to customize the system’s
vocabulary. A phrase-adding utility
scans text that has already been
entered through dictation and
adds new words to the system’s
vocabulary. The kit also provides
an error-correction feature: when a
user clicks on the first character of
an incorrectly entered phrase, the
system presents a list of likely alter-
native phrases.

The Apple Chinese Dictation
Kit will be available during the
first calendar quarter of 1996 in
the United States and Canada, at a
price of $299. Internationally,
AsiaSoft will be distributing the
product for Claris Corporation.
For more details, you can reach
AsiaSoft at Internet address asia-
soft@asiasoft.com, or you can
visit the company’s World Wide
Web page at http://www.asiasoft
.com/. ♣
=> ==> ==>

SS==> ==>

=> ==> ==>

 Apple
 Bulletin
 ’net

e editors of
h important, up-to-the-

the news, but points you to
 initiatives, market opportu-

nd you a free pizza over the Internet
if you act NOW!

<well, we would if we could>

AppleDirections
Technology 15

AppleDirections

Technology
Inside This Section

OpenDoc Human Interface FAQs 16

Demystifying DSOM 17

Human Interface: Christmas Magic 24
Beginning this month, the product formerly
known as the Mac OS Software Developer’s
Kit CD-ROM becomes the Mac OS SDK Edi-
tion of the Developer CD Series. Each quar-
ter, along with the System Software editions
in January, April, July, and October, you’ll
receive a collection of over 30 individual Soft-
ware Developer’s Kits (SDKs) on two CD-
ROM discs. These discs provide you with con-
venient access to vital information for writing
software that takes advantage of the services
provided by the Macintosh Toolbox.

A typical SDK for a Toolbox service pro-
vides you with the following key
components:

• system software extensions
• programming interfaces and libraries
• sample code
• technical documentation (supplemental

to Inside Macintosh)

These are the basic components you’ll
need in order to understand and use a Tool-
box service. (Note, however, that the discs
generally will not include special develop-
ment tools that may rely on specific Toolbox
services.) The discs also include an Obso-
lete/Unsupported folder, which contains
components that are provided for historical
reference only—do not expect future updates
or support for them.

Although we expect the SDK Edition to
provide you with a reasonably complete set
of SDKs relating to Macintosh system soft-
ware services, we cannot guarantee that
every SDK will be included. Some SDKs may
not be appropriate because of licensing
restrictions, special distribution
requirements, or changes in distribution
strategies.

System Software
Editions, Januar

CD Highlights
For complete information, see the soft-
ware license included with the CD-ROM (and
stored in electronic form in the Licensing
Info folder). Note that this license allows you
to distribute with your applications certain
libraries and system software extensions
included on the CD-ROM.

So, in addition to new versions and localiza-
tions of system software 7.5.1 and 7.5.2, Quick-
Draw 3D, QuickDraw GX, and QuickTime,
here’s what’s new and revised this month.

BBEdit Lite 3.5
BBEdit Lite is a freeware derivative of

BBEdit 3.5, the popular and critically
acclaimed text editor for programmers,
HTML authors, users of online services, and
anyone else who needs to edit plain-text files.

Note: This is not an Apple product. It is
provided on an “as is” basis. Apple is not
responsible for any problems you may
encounter in its use. (BBEdit Lite copyright
© 1992–1995 by Bare Bones Software, Inc.
All rights reserved.)

 and SDK
y 1996

System Software, January 1996
J A N U A R Y 1 9 9 6
Debugging Modern
Memory Manager
This package contains a debugging version of
the Modern Memory Manager. Once installed
on Power Macintosh computers, it allows
greater control in detecting and eliminating
Memory Manager bugs. The package also
provides a control panel that allows you to
dynamically enable and disable the debug-
ging features.

Developer Notes Update 01/96
This folder includes the document PB 190
RAM Card Error Note, which corrects an
error in the developer note for the Macintosh
PowerBook 190 computer. The error affects
developers of RAM expansion cards for both
PowerBook 190 and PowerBook 5300 com-
puters. PB 190 RAM Card Error Note
describes the error and provides guidelines
for developing RAM expansion cards that are
compatible with the Macintosh PowerBook
190 and PowerBook 5300 computers.

PopupFuncs 2.6.1
PopupFuncs is a productivity tool for devel-
opers. When invoked by clicking a control
in a source code window’s title bar, Popup-
Funcs creates a pop-up menu of every func-
tion contained in a source code file, allow-
ing you to see instantly the contents of an
unfamiliar file. If a name is selected from
the menu, the file is immediately scrolled to
the beginning of that function. PopupFuncs
works with CodeWarrior, MPW, THINK
C/Symantec C++, SADE, BBEdit, and
QUED/M, and parses C, C++, Pascal,
Object Pascal, assembler, Rez, and Fortran

please turn to page 23

16 Technology
AppleDirectionsAppleDirections
Scripting, Buttons,
and Hypertext

By Kerry Ortega and Dave
Curbow,OpenDoc Human
Interface Team; and Jon Pugh,
OpenDoc Engineering

This time we’re going to focus on
supporting scripting within Open-
Doc. This article doesn’t address
all the questions on scripting, so
please send us any others you
think of; we’ll answer them in
future columns.

Q. How do you script
actions like selecting a
menu and other controls
(such as sliders)?
A. This might be a good time to
briefly mention the different lev-
els of scripting support. If you
want more details on scripting,
see Chapter 9 in the OpenDoc
Programmer’s Guide.

First, a part can be scriptable.
To be scriptable, your part editor
must publish a list of its content
objects (for example, lines and
words in a text part) and opera-
tions (for example, bold in a text
part) and then accept semantic
events (for example, “Set Data to
Bold”). For your part to be fully
scriptable, semantic events must
be able to invoke any action a
user might be able to perform.
Someone can then write a script
to invoke the particular user
action.

The next level of scripting sup-
port is for your part to support
recording. If your part is record-
able, it can capture the user’s
actions as a series of semantic
events, convert the actions to
scripts, and replay them at a later
time to reenact the actions.

The final level of scripting sup-
port is to make your part’s inter-
face customizable (sometimes
referred to as being “tinkerable”).
If your part is customizable, users

OpenDoc H

can invoke all the actions through
scripts, and they can change the
behavior of the operations. To be
customizable, the part editor
must be scriptable and must
define content objects and opera-
tions for interface elements such
as menus and buttons.

Getting back to your question,
your part’s interface must be cus-
tomizable to support the actions
you mention. We’ve said in a pre-
vious column (Apple Directions,
October 1995) that users may
attach a script to a scriptable
part—for example, through the
Settings dialog box. A script may
have multiple sections of script
code (handlers) for the different
operations whose behavior you
want to change. Suppose that you
want your part to support events
such as mouseDown, mouseUp,
mouseEnter, mouseLeave, and
pickMenuItem; when designing
your part editor, you must define
event names for each operation
that your editor will support.
Before your editor processes any
event, the editor must check with
the attached script to see if it can
handle the event. If so, that sec-
tion of the script is run.

If you want to allow users to
write scripts that control your
part, you should publish your list
of event names in your part’s doc-
umentation and 'aete' resource.
Because HyperCard uses a set of
event names for the common
actions a user might perform, you
might want to look at HyperCard
events as examples to follow. By
the way, HyperCard uses the sub-
routine event to implement many
of its events. For more details on
subroutines, you may want to
look at the Developer Notes doc-
ument on the AppleScript CD.

Q. What about scripting doc-
ument-level commands such
as Open, Close, and Print?
What do I have to do?

uman Interf
J A N U A R
A. There are operations that
relate to the entire document—
for example, closing, saving, and
printing the current document, or
opening a different document.
The OpenDoc shell handles three
of the four required events (the
fourth, Open Application, does
not apply in the OpenDoc envi-
ronment). Your part editor can
override the definitions of these
events. Note that definitions of
these events are slightly different
than in today’s applications:

• Quit—close all windows of
the document

• Print—print the active
window

• Open—open the specified
document

The OpenDoc shell also sup-
ports three of the core events,
which your editor may override.
The events are

• Close—close the active
window

• Save—save the current
document

• Save As—save a copy of the
current document into a new
document

The OpenDoc shell will first
determine if the editor of the root
part implements these commands;
otherwise, the shell provides the
default implementation.

In addition, if the user wishes
to attach a script that is to be exe-
cuted for one of these events,
they must be attached to the root
part of the document.

Q. How should a script iden-
tify parts within a document?
A. This can be very tricky for any
document that can be revised,
because parts need not be named
or have unique names. Further-
more, the index of a part may
vary over time, and different parts
will have different ways of index-
ing their contents. For example,

ace FAQs
Y 1 9 9 6
“line 3” is fairly obvious; “circle 3”
is not. Therefore, the only reliable
way to refer to a part is by its ID.
Unfortunately, the ID is not a very
user-friendly or visible number;
however, the user can always find
the ID of a part through the Part
Info dialog box.

This problem isn’t unique to
OpenDoc, or even to AppleScript.
There just doesn’t seem to be a
great solution to this problem.

Q. In a previous column, you
said that parts should place
their scripts in the Settings
dialog box. Doesn’t that force
parts to provide some text-
editing capability to edit
scripts?
A. Yes—to allow users to edit the
script, your part needs to provide
some mechanism for viewing and
editing the script. For a text-based
language, that means you need to
support text editing. (Remember
that some script languages may
have a representation other than
text.) The text editor you provide
can just be a simple multiline edit
control. For the future, we are
looking at providing a scripting
service that parts could use.

Q. I want to create a “button”
that really is an embedded
graphic in a container part—
like having a picture in a
HyperCard stack. When the
user clicks the “button,” the
container part will run some
script. In other words, the
graphic part does not support
scripting, but its container
provides the scripting for the
embedded part and gives it
button-like behavior. Any
suggestions?
A. The basic rule in OpenDoc is
that a click goes through to the
smallest part containing the
mouse pointer. So, if the user
clicks on the graphic, that part
would get the click. But in your

Technology 17
AppleDirectionsAppleDirections
example you want the container
to get the click and handle it. To
do this you need to “fake out” the
embedded part so that it doesn’t
get the click, but the container
does.

There is one easy way to get
around this problem. If a part is
“bundled,” then it doesn’t get
the click—its container does. So,
the container could always set
the bundled checkbox (in the
Part Info dialog box) for all parts
that are embedded within that
container.

Whenever the user clicks the
graphic part, the container part
would get the click, determine
which “button” was clicked, and
then run the appropriate script.

This all makes sense when the
part is in “run” mode. However,
you need to allow the user to edit
the buttons as well. If you have
“run” and “edit” modes, you
should turn the bundle property
off—otherwise, the user can’t edit
the picture of the button.

Important: Our guidelines
recommend that the user should
be the only one who turns the
bundled checkbox on or off. But
this example is a case in which
the container part could set the
bundle property.

Q. How does one avoid
modes when editing buttons?
A. Modes aren’t always a bad
thing—we work in different modes
all the time. Modes are bad when
they aren’t clearly visible. So, a
mode for editing a script, editing
the name of a button, or resizing a
part should be clearly distinct from
other modes in which the user
could be working.

Attributes such as button
name, size, and color are proper-
ties of the button, and you can
J A N U A R
place them in the Settings dialog
box. Even though setting attribut-
es is a mode, the mode is clearly
visible and distinct.

Sometimes your users may
need “edit” and “run” modes. For
example, imagine using a part
builder to make frequent and
numerous property changes. If
the part required you to bring up
the Settings dialog box every time
you wanted to add or change a
part, after awhile you’d probably
want an easier and faster way to
enter these changes directly—an
“edit” mode. These builder appli-
cations really need the two
modes, because the modes really
reflect two different user tasks.
They are long-term modes, and as
long as they are clearly visible and
distinct from one another, using
them should be clear to the user.
Y 1 9 9 6
Q. How is hypertext achieved
in OpenDoc? I see a couple of
ways to do this: Embed a but-
ton in the text part or make
hypertext a “style.” Which
method would you suggest?
A. In the 1.0 release of OpenDoc,
we have no specific support for
hypertext links. We know this is
an important issue and plan to
work on it for a future release.
Right now, any approach will have
the same major problem: namely,
OpenDoc does not provide any
mechanism to display any destina-
tion of a hypertext link smaller
than a part. For example, there is
no way to create a link to a partic-
ular paragraph in a text part, or a
particular portion of a picture.

We are interested in hearing
any suggestions you have. ♣
How DSOM Is
Connected to Open-
Doc, and Why You
Should Care

By Gregg Williams,
Apple Directions staff

As a Mac OS developer, you’re
most likely a pretty clever individ-
ual, but you probably don’t get
away from the desktop very
much—that is, you regularly cre-
ate whiz-bang stand-alone Mac OS
applications, but you may not
know much about creating appli-
cations that reach out over the
network. And that’s OK—for now.

However, things are changing.
If you believe books like The
Essential Distributed Objects Sur-
vival Guide (see the “Resources”
box on page 23 for details), in the
next five years, stand-alone desk-
top applications are going to

Demystifyin

become as quaint as the all-in-one
home stereo systems of the
1960s. Software that exists across
a worldwide network, according
to this book and other sources,
will be the Next Big Thing and will
be more powerful than software
that is isolated on one computer.

Some would say this predic-
tion is just another case of silicon
snake oil. Sure, we have
client/server software, but it
enjoys only occasional use, and it
hasn’t changed the world, espe-
cially the personal computer
desktop. But the proponents of
distributed objects say that this
will change because of two things:
software objects, and standards
that allow them to communicate
across networks regardless of how
they were designed or what kind
of computer they live on.

So what does distributed-
object technology have to do with

g DSOM

you? You may be using it in the
not-so-distant future so you need
to know about it today, because
you need to make short- to medi-
um-term decisions that will leave
you poised to take advantage of
this new technology when the
time comes. In particular, there is
a hidden connection between this
new technology—in the form of
Distributed SOM (also called
DSOM)—and a technology that
will, guaranteed, become more
commonplace on the Mac OS
platform in the next year—name-
ly, OpenDoc.

As is so often the case, DSOM
is a concept that sits at the top of
a pyramid of concepts, and you
have to understand the founda-
tion concepts first: CORBA, SOM,
and the mechanics of using SOM
within OpenDoc. I’ll motivate the
“building” of this pyramid with a
series of questions.
What Is CORBA?
In 1989, a number of companies
formed a consortium called the
Object Management Group
(OMG); its purpose was to create
industry standards for the not-yet-
created commercial object-orient-
ed software systems that were
sure to be created. (The OMG has
grown since then; it currently has
over 500 computer and communi-
cations companies as members.)

The first specification that the
OMG defined was for what it
called an ORB (Object Request
Broker). An ORB would provide a
mechanism through which object-
oriented software from different
vendors could communicate with
each other across a network, even
when the objects ran on vastly
different computers.

In September 1991, the OMG
selected a standard interface that
implemented the mechanisms of

18 Technology
AppleDirectionsAppleDirections
an ORB. Called CORBA (Common
Object Request Broker Architec-
ture), this architecture uses a
declarative Interface Definition
Language (IDL) to specify the
interface of an object (including
its methods and its attributes)
independent of the particular
programming language and the
source code used to implement
the object.

What Is SOM?
SOM (System Object Model) is a
software technology created by
IBM for developing and packaging
object-oriented software. SOM
makes real many of the advan-
tages promised by object-oriented
programming. It offers a number
of advantages over current object-
oriented technologies:

• It allows you to create
object-oriented software using,
potentially, any programming
language. (SOM currently sup-
ports C and C++, with support
SOM
impleme

Implem
tem

Programmer adds
code that

implements SOM
objects

Creating SOM-based software.
implementation template with c
will make the development of S
for Smalltalk promised. IBM
recently announced SOM support
for (gasp!) object-oriented
COBOL in the form of its Visual-
Age for COBOL for OS/2, AIX, and
MVS products.)

• It is cross-platform (current-
ly running on Mac OS, Windows
3.x, Windows 95, and OS/2 sys-
tems, as well as IBM’s AIX version
of UNIX, and the IBM MVS main-
frame and OS/400 minicomputer
operating systems).

• It makes software reuse a
reality. You can create objects in
one language and call them from
another language. (In contrast,
object-oriented software created
today with one C++ compiler
cannot even be used by software
created by a different C++
compiler.)

• Other people can use the
object-oriented software you cre-
ate without you having to give
them your source code. (You give
them object code instead.)
J A N U A R

 object
ntation file

SOM-based
application

IDL source file

entation
plate

Support

files

SOM

 compiler

C++

 compiler/

linker

Most of the programmers’ work oc
ode that implements the SOM obje
OM objects much easier than this
• If you do it properly, you
can improve or bug-fix a class
library and replace the old version
with the new without complica-
tions. Software that uses this class
library continues to work without
having to be recompiled. (Cur-
rently, most nontrivial changes to
a C++ class library force you to
recompile any software that uses
the class library, which decreases
the ease of use that object-orient-
ed programming promises.)

One important thing to remem-
ber is that SOM is a CORBA-
compliant ORB. In terms some-
what closer to plain English, this
means that any software objects
created with SOM will work with
any other CORBA-compliant
objects, even objects created
using tools from other vendors
and (if certain conditions are
met) objects running on comput-
ers (across a network) that use
different processors and operat-
ing systems.
Y 1 9 9 6

C++ code that uses
SOM object

curs when they fill out the
ct. Direct to SOM compilers

diagram shows.
How Do You Create
Software Using SOM?
To achieve the language indepen-
dence and compiler independence
that SOM promises, you must
create your SOM classes as shown
in the figure “Creating SOM-based
software.” (This figure shows how
you create SOM classes if you are
using C++; the process is simi-
lar for any other language that
supports SOM.)

First, regardless of what lan-
guage you will be using, you define
the new SOM class in IDL (Inter-
face Definition Language), the
syntax of which is very similar to
that of C++; the result is called
an IDL file. (In the future, this
process will be much simplified by
“direct-to-SOM” compilers, which
essentially merge the SOM and
C++ compilers. With a direct-to-
SOM compiler, you will be able to
write C++ classes, and the com-
piler will produce SOM objects—a
definite improvement over having
to create IDL files.)

An IDL file uses C++-like
statements to do the following:

• name the class being
defined

• specify the new class’s par-
ent classes

• name the attributes associat-
ed with the class (in SOM, an
attribute is an externally accessi-
ble variable)

• name the methods associat-
ed with the class (a method is a
procedure that an object executes
when it receives a message telling
it to execute that method)

• specify some housekeeping
code, including a list that speci-
fies the order in which the
class’s methods will be refer-

enced internally

Second, you must use a SOM
compiler to generate a series of
files that the target language (in
this case, C++) needs for gener-
ating SOM-based software. One of
these files is called an implemen-
tation template. (To simplify this
explanation of how SOM works,

Technology 19
AppleDirectionsAppleDirections

No

Yes

1. Choose Networking.

2. Divide work between client and server
programs, and design procedures that
allow client and servers to interact.

3. Implement client/server connection.
This includes such details as:

• How does the client find the server on

 the network?

• What does the client do if the server

 fails?

• How is the system designed to prevent

 situations such as deadlocks and race

 conditions?

4. At this point, the only
way to improve
performance is to start
over (sigh).

Is

performance

adequate?

Done

Begin

Conventional client/server design. If you don’t get it right the first time, you’ve basically got to
start over.
I’ll refer to two other files that the
C++ compiler needs as support
files.)

Third, you must add the code
that implements all the methods
defined in the IDL file. The imple-
mentation template just created
contains “empty” methods, one
for each method defined in the
IDL file. In this step, you modify
the implementation template by
adding the code that implements
the class’s methods. The resulting
file is called the SOM object
implementation file.

Fourth, you write the “main”
code of your application; this is
code that uses the SOM class to
create instances of that class (that
is, to create objects that instanti-
ate that class) and to invoke
methods on objects. The support
files (mentioned earlier) that are
part of the compilation process
allow the computer language
being used to invoke a method
on an object using a simple pro-
cedure call.

For example, if the IDL file
defines a class named Car that has
a method named “accelerate,”
you would create a Car object in
C++ with the statement

myCar = new Car;

and tell myCar to accelerate with
the statement

myCar->accelerate(ev);

(The variable ev points to an
environment structure that every
SOM method call must include.)

In contrast, the equivalent C
code to create the same car and
accelerate it would be somewhat
different but would achieve the
same effect:

myCar = CarNew();
_accelerate(myCar,ev);

Getting back to the process of
creating SOM-based software, the
final step is to take the SOM
object implementation file, the
support files, and the main C++
program, and use a C++ com-
piler and linker to create an exe-
cutable program.

Admittedly, I’ve left out a few
details in both this explanation
and the corresponding diagram
to emphasize the overall structure
of how you create and use SOM
classes, but you can get the
details from a number of sources.
One such source is Chapter 2 of
Object-Oriented Programming
Using SOM and DSOM (see the
“Resources” box for details).
J A N U A R
Why Does OpenDoc
Use SOM?
Quite frankly, SOM contributes
greatly to making OpenDoc
component software usable in
the real world. Without SOM, all
OpenDoc parts would have to be
created using the same C++
compiler. Also, without SOM,
modifying and recompiling a
class library would force the
recompilation of all of its sub-
classes (which would, in some
situations, complicate the distri-
bution and bug fixing of Open-
Y 1 9 9 6
Doc parts and other SOM
software).

In addition, SOM provides
dynamic binding for its objects.
OpenDoc must have this feature
for users to be able to add new
parts to an existing document, and
SOM provides a ready-made imple-
mentation of dynamic binding.

How Does SOM Enter
Into the Creation of
OpenDoc Parts?
OpenDoc is a component soft-
ware architecture implemented as

20 Technology
AppleDirectionsAppleDirectionsAppleDirections
a set of CORBA-compliant class
libraries. To create an OpenDoc
part from scratch, you must sub-
class the ODPart class that is
implemented in the OpenDoc
shared library. You do this by writ-
ing an IDL file that defines your
part, compiling the IDL file with
the SOM compiler, adding source
code to the resulting implementa-
tion template, and compiling and
linking the resulting file, as shown
in the “Creating SOM-based soft-
ware” figure (page 18).
1. No decision
to use DSOM
TCP/IP is the
protocol).

2. Design obj
client and ser
methods that

3. Nothing to
matically han
communicatin
across a netw

Client/server using DSOM. Not
implementing network connect
without redesigning major port
Actually, there are better ways
to create OpenDoc parts. One
tool from Apple Computer, Inc.—
PartMaker—takes your name for a
part and creates a series of source
files that you then modify to cre-
ate your OpenDoc part. In addi-
tion, the OpenDoc Development
Framework (ODF) is a software
framework that gives you even
more help in creating OpenDoc
parts—and will help you create
equivalent parts for the Microsoft
Windows platform.
J A N U A R

No

Yes

Begin

 here—you must use TCP/IP
(which is not a problem—
dominant networking

ects that will implement
ver functions, and design
allow methods to interact.

do here—DSOM auto-
dles details of objects
g with each other, even
ork.

4
(
m
o
o
s

Is

performance

adequate?

Done

only does the use of DSOM elimina
ions, it also makes it possible for y
ions of your solution.
What Is DSOM?
Finally, with all the underlying
concepts explained, I can begin to
explain what DSOM is, how it
relates to OpenDoc, and why you
should care.

Distributed SOM (DSOM) is a
component of SOM (added in
IBM’s release 2.0 but not yet avail-
able on the Mac OS version, which
is numbered 2.0.7) that supports
access to objects across a network.
Code properly written to use
DSOM will access an object the
Y 1 9 9 6

. Minimize the number of
slow) cross-computer
ethod calls by moving

bjects that talk to each
ther the most to the
ame computer.

te the problems of
ou to improve performance
same way—as if it were remote—
regardless of its actual location.

Two pieces of the DSOM archi-
tecture, the Interface Repository
and the Implementation Reposi-
tory, make DSOM work. The
Interface Repository contains
information about SOM classes
and what methods and attributes
they support. The Implementa-
tion Repository knows the name
of the server on which an object
resides. On a computer that is
running DSOM, when a program
invokes a method on an object,
DSOM uses both the Interface and
Implementation Repositories to
determine where the object
resides, to cause the method to be
invoked on the object (wherever it
is, on the same computer or
across the network), and to return
the result to the program that orig-
inally invoked the method.

Herein lies the beauty of
DSOM. If you understand how
DSOM works, you can write SOM
objects today that can easily be
modified to become distributed
objects when DSOM becomes
available. (One issue that must be
addressed is the fact that distrib-
uted objects should use standard
remote programming techniques—
that is, asynchronous messaging—
to ensure that message transmis-
sion delays and errors do not
cause an individual software
object to “lock up” the computer
on which it is running.) Once
your SOM objects have been con-
verted to DSOM objects, you can
place them on remote computers
(which must also be running
DSOM) and the software that calls
them will continue to work,
whether the called object is locat-
ed locally or remotely.

Why Might I Use DSOM?
DSOM tremendously simplifies
the process of writing software
that works across a network—this
includes but (as you will later see)
is not limited to groupware and
real-time collaboration software
and any kind of client/server

Technology 21
AppleDirectionsAppleDirections

xyxyz xyxyz xyxyz

xyxyz xyxyz xyxyz

xyxyz xyxyz xyxyz

Rendering code

Code to display image

Clipping mask

Scene description

Bitmap

An OpenDoc rendering part. Contrast this single-computer
solution with the figure diagrammed in “Distributed rendering
using DSOM.”
software. DSOM isolates you from
many tedious and difficult net-
working issues. Because DSOM is
cross-platform, the software
objects you create will be able to
communicate with each other,
even if they are executing on com-
puters that use different proces-
sors and operating systems.

In addition, if you are already
using SOM (which you will be
when you create OpenDoc parts),
you will be able to use the soft-
ware objects inside those parts in
a distributed environment with
minimal extra work. (An example
at the end of this article shows
you how easy it is to do this, and
why you would want to.)

Conventional Client/
Server Design
First of all, a word up front:
DSOM doesn’t really make new
kinds of network-based solutions
possible, but it does make them
much easier to implement. Practi-
cally speaking, though, if the dif-
ference is big enough, you will
attempt things with the new tech-
nology that you formerly wouldn’t
have—so, in a way, DSOM does
make new kinds of network-based
solutions possible.

Two figures, “Conventional
client/server design” (page 19)
and “Client/server using DSOM”
(page 20), show exactly how and
where DSOM makes a difference.
(If your eyes glaze over at the
term client/server, just remember
we’re talking about a software
solution that can benefit from
computing power or data on mul-
tiple computers across a
network—which covers a lot of
things you may want to do.)

Looking at “Conventional
client/server design” first, note
that there are three main steps
involved in creating a solution:

• Step 1: Decide which net-
working protocol to use.

• Step 2: Divide the work
between the client and server com-
puters and write the code that im-
plements each computer’s share.
• Step 3: Write all the code that
implements the communication
between the client and server pro-
grams.

According to the people I
talked to, step 3 is an extremely
complicated and tedious process.
In the words of OpenDoc archi-
tect Kurt Piersol, step 3 will
involve “months and months of
work for your best programmers.”
In addition, you may have to hire
consultants who specialize in this
arcane field; according to Piersol,
this is not work you can assign to
your average C++ programmer.

If the resulting software is too
sluggish, this is your only
recourse:

• Step 4: Analyze the current
system’s performance (which is
probably being slowed down by
large volumes of network traffic)
and start over again.

How DSOM Improves
Client/Server Design
Contrast this with the approach
shown in the “Client/server using
DSOM” figure (page 20).

First, there is no step 1, really. If
you want to use DSOM, you will
probably be forced to use the
TCP/IP networking protocol (al-
though some platforms support
other protocols, such as Netware’s
IPX and IBM’s NetBIOS). However,
since TCP/IP is the most popular
networking protocol available (can
you say “Internet,” boys and girls?),
this is usually not a problem. In any
case, the transport mechanism un-
derlying DSOM is not set in stone,
so you may be able to use other
transport mechanisms in the future.
And if that happens, guess what?
DSOM objects you’ve already creat-
ed will continue to work!

Step 2 for DSOM is the same
as for conventional design: You
must divide the work up and
write the procedures that imple-
ment this work. But because
DSOM is object-oriented, you
think in terms of software objects,
not procedures.
J A N U A R
The first big win of DSOM is in
step 3—there’s nothing to do here,
and step 3 is the most difficult step
of conventional client/server
design. DSOM takes care of all the
network communications, and it
probably does a better job than
you would be able to.

The second big win of DSOM
occurs if the resulting system
doesn’t perform as well as you’d
like. When you find objects that
are generating inordinate
amounts of network traffic, you
can “balance the load” by moving
these objects to the same com-
puter. This allows you to redesign
your client/server solution in a
matter of hours or days, not
months.

Once you get a conventional
client/server solution running,
you have a solution, but it’s a
“hard-wired,” inflexible solution.
A DSOM solution, on the other
hand, has a lot of implementation
independence built into it, which
means that if your solution needs
to be changed, DSOM gives you
more options for doing so.

Using DSOM to Enhance
an OpenDoc Part
Here’s another way of looking at
DSOM: If you’re already using
Y 1 9 9 6
SOM, then it costs you very little
more to use DSOM, and you get
all the benefits of DSOM for close
to free.

Guess what? If you’re using
OpenDoc (and you are planning
on using OpenDoc, aren’t you?),
you’re using SOM. And that
means that, once DSOM becomes
available, you’ll get all its benefits
for a small amount of extra work.

But you may say that you
aren’t doing groupware or client/
server solutions, and therefore
DSOM doesn’t offer any advan-
tages to you. Here’s a counter-
example that demonstrates how
useful DSOM may be to you as an
OpenDoc developer, even if you
aren’t interested in groupware or
client/server solutions:

Let’s say you’ve built a render-
ing part for OpenDoc. Such a part
would contain a three-dimension-
al scene defined in some sort of
3D modeling language and would
display that scene by rendering
the image into a displayable
bitmap. The part, internally,
would have

• the scene description
• a clipping mask
• code that renders the scene
• code that displays the ren-

dered bitmap

22 Technology
AppleDirections
The figure “An OpenDoc ren-
dering part” (page 21) describes
this part at a block-diagram level.
You could have designed this part
differently, but you knew DSOM
was going to be available in a few
years, so you designed it this way
(for reasons that will become
obvious).

Time passes, and—boom!—
DSOM is now available. Just in
time, too—your customers are
rendering insanely complex
graphics and are complaining
about how slow your rendering
part is. Fortunately for you, your
most vocal customers think that
distributed rendering (that is,
rendering different parts of the
xyxyz xyx
xyxyz xyx
xyxyz xyx

Scene de

OpenDo

Distributed rendering using DS
OpenDoc rendering part” on pa
image on different computers and
combining them on one comput-
er) is an acceptable solution.

Here’s how much (or, actually,
how little) work it is to change a
rendering part into a distributed
rendering part:

• First, take your core render-
ing code and modify it to make it
into a DSOM object that does
rendering using asynchronous
messaging. This object must
include a render-this-for-me
method that accepts a scene
description and a clipping mask
and returns the specified part of
the rendered image as a bitmap.

• Second, place distributed-
rendering objects on various
J A N U A R

yz xyxyz
yz xyxyz
yz xyxyz

Code to
reassemble

image

Code to
display image

scription Clipping

mask 1

Clipping

mask 2

c distributed rendering part

(on computer A)

OM. By repackaging existing softw
ge 21, a single-computer rendering
other computers (or maybe
servers) on your client’s network.
You can also place a distributed-
rendering object on the computer
that hosts the “master” rendering
part.

• Third, modify your original
rendering part to farm the render-
ing work out to the available dis-
tributed-rendering objects. The
code that calls the render-this-for-
me method is the same regardless
of whether the object being
addressed is on the same comput-
er or across the network.

• Fourth, write some code
that combines the individual
image pieces into the desired
final image, then feed it to the
Y 1 9 9 6

B

B

Rendering object 1

(on computer B)

Rendering object 2

(on computer C)

Rendering

code

Rendering

code

are (in this case, the rendering cod
 part has become a distributed ren
existing, unchanged code that
displays the image. And you’re
done!

What does the end result look
like? The figure “Distributed ren-
dering using DSOM” (below)
shows how the resulting distrib-
uted-rendering part works with
the distributed-rendering objects.
Compare this with the other fig-
ure (“An OpenDoc rendering
part” on page 21) to see how
much similarity there is between
the two approaches.

Conclusions
I hope this article has helped you
understand how SOM fits into
OpenDoc and how DSOM works.
itmap 1

itmap 2

e block from the figure “An
dering part.

Technology 23
AppleDirections

• The Essential Distributed Objects Survival Guide, by Robert Orfali,
Dan Harkey, and Jeri Edwards (Wiley, 1996). This is a very compre-
hensive book about every significant distributed-object system known
as of early 1995. It devotes five chapters each to the mechanics of
OpenDoc and, on the other side of the fence, Microsoft’s Object Link-
ing and Embedding (OLE).

• Object-Oriented Programming Using SOM and DSOM, by Christi-
na Lau (Wiley, 1995). This book gives a pure explanation of how SOM
and DSOM work for creating software objects, but it doesn’t cover
OpenDoc.

• “OpenDoc Programming Made Easy,” by Dave Bice, in Apple
Directions, November 1994, page 16. This article gives an overview of
PartMaker.

• The Announcing OpenDoc 1.0 World Wide Web home page, at
location http://www.opendoc.apple.com, gives you access to the
OpenDoc 1.0 for Mac OS software, plenty of documentation, and the
latest developer release of the OpenDoc Development Framework.

• “SOMobjects: A Practical Introduction to SOM and DSOM” (docu-
ment number GG24-4357-00, available from IBM).

• IBM’s object-technology World Wide Web site, at location
http://www.austin.ibm.com/developer/objects/object_tech.html.

Resources
source files. (See the file PopupFuncs
Notes.c for details.)

Note: This is not an Apple product. It is
provided on an “as is” basis. Apple is not
responsible for any problems you may
encounter in its use.

Sample Code Update 01/96
This package contains five code examples,
which will be rolled into the Sample Code
folder on the February 1996 Tool Chest edi-
tion of the Developer CD Series.

• 7Edit 3.1. This application code gives
an example of creating a scriptable applica-
tion—that is, an application that goes far
beyond supporting just the basic four events
of the Required suite of Apple events (Open
Application, Open Documents, Print Docu-
ments, and Quit Application).

This latest version of 7Edit is similar to
the Scriptable Text Editor. Although it may
not be as fully scriptable as the Scriptable
Text Editor, it should give you a good idea of
how to make your application scriptable. In
particular, it shows you how to handle the

CD Highlights

continued from page 15
“whose” clause in AppleScript. This version
of 7Edit also demonstrates QuickDraw GX
printing and Drag Manager support.

• ChromaKeyMovie. This simple applica-
tion shows alternative approaches to remov-
ing a color from a QuickTime movie while it
is playing and allowing a separate image to
be displayed in the removed regions. It
demonstrates several features available in
QuickTime and Color QuickDraw.

• Fragment Tool. This simple application
allows basic manipulation of code fragments.
It lets you combine or separate several code
fragments and view and edit various pieces
of information associated with each code
fragment.

• MenuScripter 3.1. This example shows
how to send data to subroutines in your
AppleScript scripts. By constructing Apple
events that are sent to a script handler in a
script using OSAExecuteEvent,
OSADoEvent, and AESend, the example
shows how to call subroutine handlers in a
script and send positional or labeled para-
meters to that subroutine. This example is
J A N U A R Y 1 9 9 6
derived from the MenuScripter application,
which was created to demonstrate use of
the Open Scripting Architecture, through
which users can change scripts associated
with menu commands.

• Show Movie. This is a small application
designed to load and play movies. It demon-
strates several useful features in QuickTime
and ways to use them.

Coming Next Month
Next month’s column will feature a trip
report from the 1995 European Developer
Forum.

Alex Dosher
Developer CD Leader
Beyond the high-level overviews
of these technologies, though, I
hope you will remember two
important ideas from this article.
First, realize that the step from
OpenDoc/SOM to DSOM can be
quite small, and that the benefits
can be quite large. Second,
remember that you don’t have to
be doing groupware or client/
server solutions to benefit from
DSOM (though it is also very
good for those solution areas).
Distributed computing offers a
way of bringing more computing
power to any problem (who has
too much computing power these
days?), and DSOM objects allow
you to to harness that power
without getting bogged down in
networking details.

As I said earlier in this article,
don’t be misled into thinking, just
because DSOM doesn’t exist on
the Mac OS platform today, that
you don’t need to plan for it—it
will exist at some future date.
And, as you well know, your soft-
ware isn’t designed in a day. If
nothing else, you need to ask
yourself one question: When dis-
tributed computing becomes
commonplace (probably in the
next three to five years), is the
software I’m building and design-
ing today on a path to make use
of distributed software when the
time comes? ♣

24 Technology
AppleDirectionsAppleDirectionsAppleDirections
By Peter Bickford

It’s time once again for the annual holiday edition of the Human
Interface column, wherein I cart out my human interface wish list
for the coming year. This gives me a chance to periodically exorcise
all my petty complaints about interface design instead of letting
them bottle up inside me until they reach dangerous proportions.
Without this wish list, I’m pretty sure I’d turn into a bitter old man
who wanders the streets of Cupertino staring at the ground while
cursing under his breath about sloppy Windows ports and cryptic
Command-key combinations.

The trouble is that any proper holiday wish list should contain
both little items that are easy to get, and a few big-ticket items just
in case Santa thought you were extra good this year. You know, “I
want a Power Rangers pencil case, a G.I. Joe with Kung Fu grip, and
a peaceful solution to the war in Bosnia.” It’s easy to come up with
the list of little wishes (and by the way, thanks to all the developers
in previous years who curved their quotation marks, rearranged
their dialog buttons into the proper order, and revised their black-
on-dark-gray color schemes). The real challenge is coming up with
the big things—what do I really want to see in tomorrow’s
software? Strangely enough, the answer came to me this weekend
as I was trying to electrocute myself.

But First . . . the List
Before I get on to that story, let me first give you this year’s holiday
wish list. Remember, although I’d be delighted to get everything
here, you can make this a happier holiday season for me and your
customers with any one of these items.

1. Someone to do the housekeeping—or at least set the clocks.
When I became a homeowner this year, I started to realize that
there are a whole series of rituals you have to learn if you want to
keep things running right: mowing the lawn every couple of weeks,
pruning back the roses, changing the filter in the furnace, and so
on. When you add these chores to the countless others that go into
life, it starts taking up quite a bit of time. Computers demand simi-
lar amounts of attention, and experienced Macintosh owners have
developed a practice of periodically running backups, diagnosing
and defragmenting their hard disks, rebuilding their desktops, and
so on. Otherwise, problems accumulate and Bad Things start to
happen spontaneously.

What our computer systems need are the equivalents of the
frost-free refrigerator and the household staff. Like the frost-free
refrigerator, software components ought to be more self-maintain-
ing. Applications should be able to resolve basic problems without
intervention from the user. When a preferences file is missing, an
application should create a new one “on the fly.” Similarly, when a
program that relies on other files is moved to another hard disk, it
should try to resolve its links before asking the user for help. For

Human Interface

Holiday Magic
J A N U A
instance, whenever I move my AppleLink folder to another hard
drive, it should try substituting its new path when looking for the
connection file before complaining of an error.

It would also be great if there were some facility inside the com-
puter whose job it was to keep things running smoothly: fetching
your mail, optimizing your hard disk, and so on. We’re making
some progress in this direction, but the services that have been
created so far need to be much less obtrusive and much more reli-
able before people will begin to trust them. As we begin to move
toward agents and other automatic facilities, we need to keep in
mind that doing a simple thing well is better than doing a complex
thing poorly. Instead of omnisciently trying to optimize my desktop
according to an analysis of my working style, an agent might start
by automatically setting the clock when daylight-saving time rolls
around (after all, the system knows my location from the Map con-
trol panel and my Daylight Savings Time setting from the Date &
Time panel).

2. An end to gratuitous tool bars. The winner for most overused
interface element goes to the tool bar. It seems like some form of
mass hysteria is sweeping the world, convincing developers that
their applications are just not “on the cutting edge” if they don’t
have a large collection of indecipherable icons taking up valuable
screen space just below the menu bar. No doubt this is the same
sort of groupthink that gave us tail fins on cars and had the chil-
dren of the 1960s going through high school in bell-bottom pants.

The problem is not so much that tool bars are bad in them-
selves, but that designers are starting to automatically assume that
an application needs one. I once met with a group of designers
who were showing me some sketches of their interface. Right
below the menu bar was a big section filled with squares that they
used to represent a tool bar.

“Which functions go there?” I asked.
“We don’t know yet, but we’ll think of something,” they replied.
If you don’t know why you need a tool bar—or any interface

element—don’t use it. Tool bars should only be used in those
extraordinary cases when you have a few high-frequency functions
that are so useful to have at hand that it’s worth permanently tak-
ing up a rather large amount of screen space. For most programs,
you’d be better served by palettes (which are generally smaller as
well as movable), or simply leaving your tool bar functions as menu
commands.

3. Some really great games for the Macintosh computer. Oh,
wait—what am I thinking? There’s Wolfenstein 3-D, Full Throttle,
Loony Labyrinth, Troubled Souls, You Don’t Know Jack, Marathon.
. . . Er, strike this point, just keep ’em coming!

4. For every developer to staff the company’s technical support
lines for a day. Better yet, have your company set up a special
training course in which real users coach you while you do their
jobs for a day. One of the problems with being a developer is that
R Y 1 9 9 6

Technology 25
AppleDirectionsAppleDirectionsAppleDirections
we’re always taking guesses at what our users are going to be doing
and thinking. At our best, we try out designs and prototypes on
sample users, but we’re usually isolated from the effects of having
guessed wrong. The technical support folks, on the other hand, get
an earful every time we concoct a confusing error message or con-
voluted feature. A couple of years ago I sat in on the Apple Com-
puter, Inc., support line and got a real education in how basic
aspects of our system software that I had taken for granted (fonts,
memory, MultiFinder, and so on) were the basis for most of our
trouble calls. With at least some of these areas, all it took was a
small change to eliminate hundreds of support calls. Still, you can’t
fix a problem until you know about it—and there’s no substitute for
firsthand experience.

Of Circuit Breakers and Magic
But what do I really want most of all from developers? Let me tell
you a story. . . .

In California, most houses don’t have basements. So when my
wife and I were looking for our first home, she would check out
kitchens and closets, and I would go straight for the garage. That
was where I was going to fulfill my boyhood dream and build a
music studio of my very own.

I drew up the plans on my PowerBook, warned all the neigh-
bors, and when my parents came out to visit a couple of weeks ago,
I decided that I would either take them to the Tech Museum again,
or make them help me lay the foundation. For the rest of the week-
end, my dad (who is legally blind) and I shared a powerful father-
son bonding experience as we blasted nails into the concrete using
a .22 caliber nail gun. (“Dad, put on that ear protection or I’m tak-
ing it away from you!” [Blam!] “Hey! I mean it!”)

By the end of last week, the framing was up and it was time to
do the electrical work. I’d wired any number of outlets and switch-
es in my life, but frankly the thought of going into a 200-amp break-
er box to install a new circuit for the studio left me just a wee bit
nervous. Like most novice computer users, I was convinced that if I
touched it, I would break it. And if I broke it, Bad Things would
happen. Two scenarios kept playing themselves out in my head: In
one, I was the victorious god of Home Improvement, whose new
studio was powered by all the electricity it would ever need. In
another, my house was burning down and I was being rushed to
the hospital while still clutching a melted screwdriver.

After quizzing all my electrically savvy friends, reading and
rereading the safety warnings, and throwing the main breakers, I
worked up the courage to unscrew the box and take a look inside.
Thanks to standardization and consistency, it turned out that
installing a new circuit was dead simple. The new circuit breaker
only fit in one way, white wires ran with white wires, ground wires
ran with ground wires, and so forth. [Disclaimer: A smarter person
would have called an electrician—do not try this at home.] Twenty
J A N U A R
minutes later, the new circuit was wired up and I was ready to turn
it on. When I flipped the breakers back on and got power on the
new circuit, it felt like I’d discovered some new world. A few min-
utes beforehand, the breaker box was the scariest thing in my
house. Now I felt I not only understood it, but I could use it to do
things that were impossible otherwise. It was magic.

At our best, people get the same feeling the first time they use a
Macintosh. At our best, the Macintosh takes the secret (and scary)
world of computers and turns it into something that lets average
people do things they never could do before. It lets musicians
score pieces that are impossible to play alone. It lets entrepreneurs,
as well as Fortune 500 companies, manage accounts and projects.
It lets a salesman with no artistic experience or staff put together a
presentation that dazzles a prospective client.

We’re in the club. We’re no more impressed by any of these
feats than an electrician would be impressed by my installing a sim-
ple circuit. But if we really want to, we can do more than just prac-
tice our trade, write solid code and earn respect among our peers.
We can get into our user’s shoes and show them how using a com-
puter can make their life better. We can lower barriers like configu-
ration problems, technical jargon, and arcane feature sets that keep
people from using computers to their full potential. We’re in the
club. But at our best, we can create the products that let people
who aren’t in the club make magic.

Happy Holidays,
Doc

Peter Bickford is a member of Apple Computer’s Human Interface
Design Center. He can be reached by AppleLink at THE.DOKTOR
or on the Internet at the.doktor@applelink.apple.com.
Y 1 9 9 6

26 Business
AppleDirections

ales

Business
Inside This Section

Producing “Bug-Less”
Software—Part 1:
The Testing Process 29
By Ray Kaupp, President,
User Group Connection

Everyone these days is talking
about staying close to the cus-
tomer. It seems like a good idea,
so “Mom and apple pie.” You gain
a better understanding of the
features that your customers
want, and they recommend your
products to others.

Let me suggest a more mer-
cenary, bottom-line rationale. An
important reason to focus your
marketing attention on your
installed base is that they repre-
sent the ultimate low-hanging
fruit in your marketing orchard.
Several studies have shown that
the cost of selling to a current
customer is a fraction of the cost
of winning over a new prospect,
perhaps as low as 20 percent. And
with a little up-front planning,
you can significantly increase
your ongoing revenue stream.

While working at User Group
Connection, I’ve been involved in
dozens of installed base cam-
paigns. In this article, I share
some strategies that have been
used successfully by other com-
panies to build customer loyalty
and maximize installed base sales.

The Name Game
This summer, my refrigerator
sounded its death knell. I had no
receipts or warranty documents.
All I knew was that I had bought
it from Sears a few years ago, so I
called their toll-free number. With
just my name to go on, the cus-
tomer service person was able to

Ideas for Ma
Marketing Feature
immediately locate a purchase
record that included the model
number, price paid, purchase
date, and the fact that it was still
under warranty. Armed with this
information, Sears was able to
schedule a repair person on the
spot and give me another reason
to buy my next appliance from
Sears. And I never even sent in a
warranty card!

In the computer industry,
we’re not nearly as good at
obtaining the names of our cus-
tomers. We can, however, learn
from companies in other indus-
tries, and apply this knowledge to
our own businesses. There are
two basic aspects of your specific
business that determine how
much effort it takes to get cus-
tomer names.

First, the more expensive your
product, the easier it is to get a
customer’s name. Sears knew
about the $800 refrigerator I
charged there, but had no idea
that I also bought a $5 can of
paint. Regardless of how cus-
tomers pay or where they buy
your product, they’re more likely
to register a $599 copy of Adobe
Photoshop than a $36 Disney
Lion King CD-ROM. The more
expensive and complex your
product is, the more likely that
users are going to register for
technical support, upgrades,
and the other benefits of your
installed base marketing program.
(Though I wouldn’t recommend
raising the price of your $36 game
to $599 solely for name-gathering
purposes!)

ximizing Ins
J A N U A R
Second, it’s going to be easier
to track your installed base if you
sell your products directly to con-
sumers than if you sell exclusively
through retail channels. Unless
you require your sales channel to
report end-user sales (Microsoft
product managers, for example,
receive weekly reports on prod-
uct sales from major retail stores),
you will lose sight of your prod-
uct as it travels from distributor
to retailer to consumer.

But no matter what price
range or channel you sell into,
the most important aspect of any
installed base marketing plan is
your ability to locate your cus-
tomers. You have to get their
names! Any direct contact you
have with a customer—whether
through support calls, e-mail,
complaint letters, or, of course,
registration cards—should be
considered an opportunity to
capture customer names and
addresses.

Registration Cards:
Bad News, Good News
The bad news about product reg-
istration cards is that very few
customers send them in—espe-
cially for low-end products.

What’s the good news? If you
can get anywhere near 50 per-
cent of your product registration
cards returned, you’ll be doing
better than most of your com-
puter industry peers. There are
many ways to increase your
return rate. It just requires a dif-
ferent mindset. Time and effort
spent marketing your product

talled Base S
Y 1 9 9 6
registration card will be reward-
ed by many years of successful
installed base marketing.

Attack the registration card
problem on three fronts. First,
make it obvious that you want the
card filled out. If you use a “real”
card, make sure that it’s impossi-
ble to overlook when the cus-
tomer opens the box. Better yet,
build the registration process into
your software product, including
a modem call to a toll-free regis-
tration number. Just be sure to
give your unnetworked users a
paper option.

Second, make it exceedingly
simple for customers to provide
you with information. Design
your registration fields so that
they’re easy to understand and
inviting to fill out. At a minimum,
collect your customer’s name,
mailing address, and e-mail
address. Preprint a customer’s
product and serial number on the
card so you’ll be sure to capture
this information. Keep it short,
because a long form will reduce
your yields. And don’t make them
buy stamps; use a prepaid mailer.

Finally, no matter how easy you
make the registration process,
you’re still asking people to spend
valuable time doing it. What are
you going to give them in return?
Here are a few incentives that

Business 27AppleDirections
other developers have used with
success:

• free technical support for a
year (a $72 value)

• a subscription to Macworld
magazine (a $24 value)

• a quarterly newsletter with
tips on how to use your product

• a free item, such as a mouse-
pad (please, no more company
logos!)

• discounts on other products
you sell

• cost reductions on future
releases and upgrades

• an opportunity to beta-test
new products
By Ivan Levison

When most software publishers star
grams, they worry about things such
finding hot bonus offers. But they of
important question of all: “How effec
the people who buy my software?”

If you’re using an in-box registra
(as opposed to electronic “forced” r
techniques you can use to start imp

1. Make your registration card BI
box, you know they’re headed towar
means you have to stop them cold t
card. Since the goal is to get noticed
little 7-by-4-inch card? It makes mu
8.5-by-11-inch sheet that folds dow
gives you a cover surface you can u
user’s attention.

2. Never stick the registration car
you want the user to do is fill in the
mail. So why hide it? All too many p
in among a pile of fliers and notices,
may never get noticed.

3. Consider putting your registra
your floppy disks. That’s a sure way
That’s what Intuit does on the back o
Quicken disks. The envelope reads a

Fill out and mail Quicken registra
Remove and install program disk
Take advantage of valuable offers
4. Provide a clear reason for the

proven motivators for you to consid

Seven Ways t
Card Returns
• placement on your e-mail
distribution list

• a request to be on your advi-
sory council

• a chance to win a free prod-
uct or trip

While this is by no means an
exhaustive list of registration card
incentives, it gives you some ideas
to experiment with. You’re giving
customers a reason to register
beyond the prospect of receiving
“junk mail” from yet another ven-
dor. Create a compelling
program, tell your customers
about it, and the registration
cards will pour in. (For more
ideas on building your customer
J A N U A R

t planning their upgrade mailing pro-
 as setting the right price-point and
ten don’t ask themselves the most
tively am I obtaining the names of

tion card to capture vital information
egistration), here are some
roving return rates immediately.
G. When your customers open your
d your installation disk or CD. This
o make them fill in your registration
, why stick to a pathetic, invisible
ch more sense to start out with an
n to 5.5 by 8.5 inches. This format
se for some terrific copy that gets the

d inside your manual. The first thing
registration card and drop it in the
ublishers mix their registration cards
 or insert it in the manual where it

tion card in an envelope along with
 to get your registration card noticed.
f the envelope that contains Intuit’s

s follows:
tion card.
s.
.

user to register. Here are some
er:

o Increase Reg
list, see the box, “Seven Ways to
Increase Registration Card
Returns,” compiled by Ivan Levi-
son, a writer who specializes in
technology direct mail.)

Building Long-Term
Customer Relationships
Citibank, one of the finest market-
ing companies around, thinks
about customers in terms of the
value of their lifetime financial
transactions. Cellular phone com-
panies also view their customer
relationships this way: Phones are
practically free (I even saw an ad
in which a cellular company
offered to pay me to take one!),
Y 1 9 9 6

• free premiums such as fonts, clip
newsletters, and so on

• free technical support
• special offers on future products (

enue for your company!)
• early-bird upgrade special deals
• new product information (add-ins
• free replacements for damaged di

5. Don’t ask for too much informati
information is precious, but if you load
tions, you’ll turn the user off and get n
few important questions and avoid ove

6. Put a reminder sticker on your fi
know for sure that every single user w
why not attach a sticker that says som

Important! Fill in and mail the enclo
still eligible for FREE customer suppor

This simple technique can have a s
card returns.

7. Invest in your registration card. F
lowly registration card is a mere afterth
expertly designed registration card can
return rates, as forward-looking publis
Remember, a modest investment in yo
truly giant increases in revenues.

Ivan Levison is an independent copyw
direct mail, advertising, brochures, pac
technology companies. For more direc
at http://www.levison.com or give him

istration
because the value of a customer is
in the long-term service revenue,
not the one-time hardware pur-
chase.

Increasingly, the most success-
ful software companies are taking
a similar approach, viewing each
customer as a lifetime source of
revenues. These companies are
working hard to build and main-
tain long-term relationships with
customers. Here are a few tactics
that can help you foster a sense of
loyalty among your customers
and bring in more future sales:

• Publish a newsletter. It
doesn’t have to be elaborate.
Even an 8.5-by-11-inch quarterly
-art, charts, templates, books,

that is, additional sources of rev-

, enhancements, and so on)
sks

on. Obviously, registration card
 up the card with too many ques-
othing. It’s much better to ask a
rloading users.

rst installation disk. Since you
ill pick up your installation disks,
ething like this:
sed registration card while you are
t.
ignificant impact on registration

or all too many publishers, the
ought. What a pity! A well-written,
 have an enormous effect on
hers have already discovered.
ur registration card can result in

riter who writes profit-building
kage copy, and other materials for
t mail tips, check out his Web site
 a call at 415-461-0672.

28 Business
AppleDirections

Installed Base
Marketing Resources
Here’s a short list of publications and contacts that can provide you
with a wealth of ideas on marketing to your installed base of
customers.

• The Direct Marketing Handbook by Edward L. Nash (McGraw-Hill,
1992).

• Database Marketing by Edward L. Nash (McGraw-Hill, 1993).
• How to Drive Your Competition Crazy by Guy Kawasaki

(Hyperion, 1995).
• Customers for Life by Carl Sewell (Doubleday, 1990).
• Raving Fans by Ken Blanchard and Sheldon Bowles (Morrow,

1993).
• Marketing With Computer User Groups by Sam Decker (User

Group Connection, 1995).
• “The Levison Letter—Action Ideas for Better Marketing Commu-

nications,” 415-461-7738.
• Apple Authorized User Group Program and Apple Support Coor-

dinator Program mailings are managed by the User Group Connection.
For mailing service information, contact this organization at 408-461-
5700, send e-mail to info@ugconnection.org, or check out their Web
page at the location http://www.ugconnection.org.
self-mailer will keep your com-
pany name and product infor-
mation in front of your
customers.

• Organize customer events.
Hold an open house at your office
for local customers. Leverage
your trade show efforts by orga-
nizing a “customer appreciation”
reception at these events.

• Create a “preferred
customer” support line. Reward
your registered users with
enhanced technical support fea-
tures—a shorter wait, escalation
to your engineering group, or a
lower price.

• Establish a customer advi-
sory council. Let registered users
apply to become members of an
elite customer panel that provides
advice on future product plans.

• Survey your installed base
regularly. At least once a year,
conduct a comprehensive survey
of your registered users, asking
them about product usage, their
favorite and most disliked fea-
tures, and any competitive issues
that are important to them.

• Use the information super-
highway. It’s more than a buzz-
word: Online communication is
the most cost-effective way to
maintain your relationship with
customers. Create a Web page so
customers can check out your
latest product information and
demos. Use a list server to cap-
ture prospect names and to
quickly notify interested users of
upgrades, special offers, and new
products.

• Offer registered users dis-
counts. Financially reward these
users for their loyalty, and they
may return the favor by buying
other products in your line.

• Be creative! Hold a brain-
storming session with your com-
pany’s product development,
support, marketing, and produc-
tion people. Invent new ways to
strengthen your relationship with
the customer.

For more ideas on building
customer loyalty, take a look at
the any of the publications listed
in the “Installed Base Marketing
Resources” box on this page.

Someone Else’s
Installed Base?
If you’re launching your first
product or looking for ways to
extend your marketing reach, you
may be able to tap into another
vendor’s installed base to fill out
your own customer list.

For example, you can easily
gain access to several lists of
Apple Computer, Inc., customers.
(See the “Installed Base Marketing
Resources” box for contact infor-
mation.) One of the best data-
bases of potential customers is
available through the Apple
Authorized User Group program.
Over the last 13 years, Apple has
supported the formation and
development of a strong user
group community. Today, there
are nearly 2,300 Apple user
groups in the United States and
Canada, and hundreds more in
other parts of the world. Com-
bined membership in the United
States alone is more than 600,000.
The word-of-mouth influence that
user group members have on
product sales makes these cus-
tomers especially valuable. The
typical member earns an average
of almost $60,000 per year and
influences around $30,000 in
annual PC-related purchases.

Working with user groups is an
especially cost-effective approach
to tapping into Apple’s installed
base, since most mailings are sub-
sidized by Apple Computer. For
example, mailing a data sheet to
the leader of each user group
costs about the same as a first-
class postage stamp.

If your products are sold into
large institutions, you may want
to consider co-marketing oppor-
tunities with the Apple Support
Coordinator (ASC) program.
Apple Support Coordinators are
the key individuals that Apple
sales representatives call upon in
higher education, government,
J A N U A R
and corporate institutions. There
are currently about 10,000 identi-
fied ASCs in corporations, and
another 5,000 in colleges and
universities. Every quarter, Apple
mails product and marketing pro-
gram information to 15,000 key
institutional customers. Like the
user group program, developers
can participate in this ASC mailing
for a nominal price.

Apple frequently runs co-mar-
keting campaigns that let you tap
into their installed base, though
most tend to be short-term pro-
motions. The trick is to stay in
touch with the marketing folks in
the consumer, business and gov-
ernment, and education groups
to learn about these opportuni-
ties in advance.

Apple isn’t the only company
to provide access to their installed
base. About a month ago, I
received a catalog from Intuit. It
included information on new
Intuit products, but it also includ-
ed advertisements for several
unrelated products available from
other companies. “Bundling” your
Y 1 9 9 6
product information with another
company’s mailing is another
cost-effective way to reach new
potential customers.

The Real Payback
You’ve got the names. Your cus-
tomers feel like you care about
them, since you’ve worked hard
to develop a relationship with
them. Now you just have to sell
them something. After all, it’s
revenue that makes this all worth-
while. The best way to be sure
that you’re making the right
offers to your installed base is to
check with some of your
customers. If you have an adviso-
ry council, try out your ideas on
them before you roll them out to
your entire customer base.

The simplest sale is the
upgrade. The hardest part about
selling upgrades is pricing. How
much is it worth to go from release
3.12 to 3.13? How about from 3.13
to 4.0? And should it cost more for
customers who skipped a release?
Only your customers can help you
with the answers.

Business 29AppleDirections
Another potential source of
incremental revenue from your
installed base is sales of “compan-
ion” products. A companion
product can be a market-specific
template or set of macros (say, a
Photoshop filter or a Quark pre-
press script) that enhances the
functionality of your main applica-
tion. Another type of companion
product is one that performs
complementary functions for the
same type of customer—for exam-
ple, a calendar program sold to
the installed base of a contact
management package.
Companion products may be
marketed as joint ventures with
other developers where you
“swap” customers, or they may be
related products from your own
company. And if you can’t find a
third-party companion product,
consider building one from
scratch.

Another great way to sell incre-
mental products is by organizing a
club or interest group around
your customers’ interests. At the
software distribution level, Kid-
Soft has done an excellent job of
installed base selling through
J A N U A R
their Club KidSoft Magazine and
demo CD-ROM. Club KidSoft
materials entertain computer-
using kids, all the while building
customer loyalty and “soft-selling”
product offerings.

Leverage, Leverage,
Leverage
Leverage may be the most
overused term in all of marketing,
but your installed base may be
the greatest leverage you have.
Remember, it costs up to five
times as much to get a new cus-
tomer as it does to sell to a
Y 1 9 9 6
current customer. And the
increased satisfaction you garner
from a well-designed installed
base campaign can turn your cur-
rent users into highly motivated
evangelists for your products. ♣

Ray Kaupp (rkaupp@ugconnec-
tion.org) is the president of User
Group Connection, an organiza-
tion that helps Macintosh and
Windows developers market to
user groups around the world.
Producing “
Part 1: The T
By Victor J. Hnyp, President,
Prosoft Labs

Question: Which of the following
types of software are most likely
to be bug-free?

(a) freeware
(b) shareware
(c) commercial applications
(d) commercial utilities
Answer: None of the above.

Witness the first rule of soft-
ware testing—No application,
utility, or any other software pack-
age is completely devoid of bugs.
You can test a software product
for years, but not find all of them.

Since 1985, Prosoft Labs has
helped companies identify and
eradicate bugs. We’ve tested com-
mercial software for publishers of
Mac OS and Windows-based
applications, cross-platform utili-
ties, and multimedia products.
And through these efforts, we’ve
developed an effective methodol-
ogy for producing software with
the least possible number of
bugs—in other words, “bug-less”
software.

Business Feature
Bug-Less” So
esting Proce

This two-part article provides
you with information that will
help you create more reliable
software. Part 1 discusses basic
strategies and processes essen-
tial to software testing. Part 2
describes some of our tried-and-
true bug-chasing tactics. If you’re
new to the testing process, this
first article will give you a better
understanding of what test engi-
neers do, and it may even help
you become a better tester of
your own products. If you’re
already an expert software tester,
you’ll probably find the technical
tips in Part 2 to be most useful.

Bugs: An Industry
Infestation
From Internet access programs to
learning games to business appli-
cations, buyers are confronted
with flashy packaging, glitzy pro-
motions, and “bargain” software.
At the same time, dozens of new
computers, CD-ROM drives, print-
ers, and other peripherals are
being introduced. Operating sys-
tems are enhanced at least once a
year. Drivers, screen savers, and
ftware—
ss

utilities abound. And many of
these products are released to
consumers with very little (or the
wrong) testing.

Every day, hundreds of sys-
tems are purchased by first-time
buyers. These novices are smitten
by promises of “ease of use” and
“plug and play.” They unpack
their new products, and some-
times within minutes they’re
faced with system errors, debug
messages, and frozen computer
systems. Witness the birth of
unhappy customers.

How can you be sure your
software product doesn’t con-
tribute to a customer’s unhappi-
ness? Since software can’t be 100
percent bug-free, we as develop-
ers should concentrate on pro-
ducing products with the fewest
bugs possible. Hence the term
bug-less software.

Why Can’t Software
Be Bug-Free?
It’s not just your imagination: It is
getting harder to find and eradi-
cate software bugs. There are
several reasons behind this trend:
• Configuration prolifera-
tion. Back in 1984, there was one
model of Macintosh computer,
and Apple Computer, Inc., provid-
ed users with most peripherals
and drivers. If your program ran
fine on the Macintosh on your
desk, chances are that it ran fine
on any Macintosh of that era.
Today, there are dozens of Macin-
tosh models that can be
customized and configured a
thousand different ways—all of
which makes it more difficult to
thoroughly test new products.

• Multiple standards. As the
industry migrates toward cross-
platform applications, program-
mers must support multiple stan-
dards. Programs must address
data format differences, and byte-
swapping situations such as big-
endian versus little-endian. Win-
dows-based computers support
different sound, color table, and
movie formats than Macintosh
computers. Driver software must
contend with NuBus™ and PCI
bus structures.

• Program size. Today’s soft-
ware has grown in size in order to

30 Business
AppleDirections

The real world is filled with users who don’t
follow the rules. Users can (and do) attempt

strange things that automated testing
and code path analysis scripts can

never reproduce.
support extensive computing
options. In 1984, programs 64K
in size were considered large,
whereas today a word processor
can require 6 megabytes or more!
Large programs have complex
decision paths and often require
virtual memory, which prevents
you from knowing when pieces of
your code will get swapped to
disk.

• Programming complexity.
As the power of the Mac OS plat-
form grows, so does the complex-
ity of its programming environ-
ment. Macintosh programmers
must now support CISC proces-
sors from the 68000 family, RISC
processors from the PowerPC
family, and numerous operating
systems from old (6.0x) to new
(7.5.2). We must contend with
and support technologies such as
Apple events, OpenDoc, AOCE,
and QuickDraw GX, and the list
goes on! Cooperative multitask-
ing is more important than ever.
Drivers must coexist with other
drivers. Applications must sup-
port multiple drivers and coexist
with other applications.

The programmer’s job is get-
ting tougher, and it’s easier to
make mistakes. But by intelligent-
ly planning your software quality
assurance (SQA) testing process,
you can maximize your testing
resources, while minimizing the
number of bugs in your new
product.

Building “Bomb Shelters”
It would take several hundred
years to fully test a software
package. There are virtually bil-
lions of combinations of variables
to test in any given piece of soft-
ware. And it often seems that the
more time you have to test a pro-
gram, the more tests you’ll realize
you have to perform.

This is why code path analysis
(CPA) utilities have enjoyed
increased popularity among SQA
teams. CPA utilities analyze a pro-
gram and determine the many
possible decision paths that
program flow can take. The utility
then creates scripts that repeat-
edly run under automated test
environments and change values
of variables. The intent is to
make sure that each line of code
is exercised within an applica-
tion. This works well on the sur-
face, but it can lead to a false
sense of security. Automated
testing doesn’t approximate
application usage under real-
world conditions.
The real world is filled with
users who don’t follow the rules.
Users can (and do) attempt
strange things that automated
testing and code path analysis
scripts can never reproduce.
Users try every imaginable combi-
nation of keystrokes. They change
monitor depth for no apparent
reason. They switch in and out of
applications on a whim. They may
shut a computer off by pulling the
plug from the wall.

No matter how hard you try,
you can never completely test a
software product in the myriad of
ways a customer will use it. As
developers, we can only antici-
pate the fallout, then build a bet-
ter “bomb shelter.”

In essence, every testing
schedule is an accelerated testing
schedule! From what we’ve
already learned, it’s apparent that
it takes months (and possibly
years) of testing to try every pro-
gram function in every combina-
tion of machine, operating sys-
tem, monitor, and printer.

The trick to successful soft-
ware testing is not to test all pos-
sible combinations, but to pick a
J A N U A R
cross-section of tests that are
most likely to produce anomalies.
Use testing tools wherever possi-
ble, but don’t rely too heavily on
automated tests. Concentrate on
tests that quickly pinpoint prob-
lems that may never surface
through automated means.

Pre-Alpha Stage—
Generating the Test Plan
It helps to start testing as early as
possible in a program’s develop-
ment cycle. The later a problem is
discovered in the development
cycle, the more time, money, and
effort it takes to fix it. Many pro-
ject managers make the mistake
of testing a product only after it
has reached the late alpha or early
beta stage. Then it’s too late in
the game to make meaningful
revisions. A better approach is to
have your software quality assur-
ance (SQA) team involved from
the very beginning, when the
“requirements” document is dis-
tributed. This gives your test lead
engineer a head start in preparing
a detailed test plan.

The SQA test plan is your test
team’s road map of the work
ahead of them. It helps your com-
pany discover, identify, report,
and track problems in a software
product. By performing this ser-
vice, SQA teams improve the
quality and reliability of a pro-
gram. This in turn results in fewer
technical support calls, fewer bug-
fix updates, and better margins
for software publishers.

With a good SQA plan, project
managers can sleep at night
knowing that most bugs (and

Y 1 9 9 6
hopefully all the serious ones) are
eradicated from the shipping
product. A poor SQA plan, or
none at all, puts the product (and
the project manager) at risk of
failing in the marketplace. Releas-
ing buggy software can result in a
tarnished company image and
possible lawsuits.

It’s the test lead engineer’s job
to determine which tools need to
be purchased and which should
be written from scratch. The test
lead designs test cases that are
used to test functionality, com-
patibility, and anticipated prob-
lem areas. The test lead designs
a test matrix that will serve as a
check-off sheet for tests as they
are completed.

From the requirements docu-
ment, a development team can
identify areas of the program that
must pass “race” conditions—
conditions in which timing or
speed of execution is critical.
These pieces should be coded
and tested first, so that if prob-
lems are found, another approach
can be engineered. This is
extremely important for code that
is interrupt-driven.

Test teams can establish
benchmarks based on execution
speed, accuracy, or any other
measurable criteria. These bench-
marks become test cases that are
checked with each new build of
the program to make sure things
aren’t slipping beyond a given
threshold. The test team can use
benchmarks to test a product
against a competitor’s, then pro-
vide valuable feedback to the
development team.

By involving a test lead engi-
neer early in the process, the pro-
ject manager can get useful feed-
back on the testability of the
product. Through the test lead’s
guidance, the requirements docu-
ment can stipulate compile switch
settings that allow greater feed-
back to test engineers about the
internal state of the program. Prior
to final build, these compile
switches can be turned off so that

Business 31AppleDirections
the program’s final delivery size
or execution speed are not
affected.

Alpha Stage
The alpha stage is when “real”
testing begins. Alpha testing is
performed through a test cycle—a
full test of all applicable test cases
that were designed for the given
deliverable, along with updates to
the bug-tracking database. At the
close of a test cycle, the test lead
produces a summary report of
the bugs found, plus a summary
report of all known problems.
Test cycles repeat through alpha,
beta, and final candidate stages
until the product ships. The first
test cycles take the longest
amount of time (sometimes last-
ing a few weeks). As develop-
ment progresses, test cycles tend
to get shorter, because (hopeful-
ly) less of the program needs to
be retested each time.

Usually, a test cycle consists of
the following steps (shown in
order):

• “QuickLook” acceptance.
One or two test team members
receive a build from the develop-
ment team. They spend a short
amount of time (15 minutes or
so) making sure the application
launches and provides basic func-
tionality. If menus don’t work, or
if the program crashes or runs
out of memory with no provoca-
tion, then there’s no use in test-
ing this build any further. If the
program fails quickLook accep-
tance, it’s returned to the devel-
opment team.

• Deliverable acceptance.
The program is checked for func-
tionality against the promised
deliverable. The deliverable states
that a certain dialog box or other
piece of code should be imple-
mented. If the tester can’t navi-
gate to that piece of code (a
menu is missing or disabled, the
dialog box won’t appear, and so
on), then that fact is entered as a
problem in the bug-tracking
database. If too many items are
missing, the build might be reject-
ed completely.

• Regression testing. Regres-
sion testing is testing that is per-
formed every time a bug is
claimed to be fixed. The test that
produced the original bug is
repeated, and the results are
entered into the bug-tracking
database. If the bug has indeed
been fixed, the bug is “closed” in
the database. If the bug is not
fixed, an explanation for why the
bug wasn’t fixed correctly is
entered into the database, and
the bug is returned to the devel-
opment team for another try.

A second part of regression
testing entails making sure that a
bug fix doesn’t break something
else. This is extremely important
when a new decision path is
added to an already complicated
section of the program. All related
decisions in the decision path
should be regression-tested in
order to make sure they still func-
tion according to specification.

Sometimes bugs mask other
bugs. This means that once the
first bug is fixed, the second bug
becomes apparent. It’s the nature
of software engineers to concen-
trate on fixing documented bugs,
then moving on to the next bug
in the bug database. It is the
tester’s responsibility (through
regression testing) to find any
bugs that become “unmasked” by
any given bug fix.

• Test-case execution. With
each pass through the test cycle,
more of the development has
been completed. More of the test
plan is executed and more of the
test matrix is checked off. Test-
case execution includes all types
of testing, including compatibility,
configuration, and stress. (Some
of these specific test cases will be
discussed in detail in the second
part of this article, which will run
next month.)

During test-case execution, it’s
important that testers stick to the
testing designated for each deliv-
erable. Deviation from the test
J A N U A R
plan can lead to testing parts of
the program that have not been
officially released by the develop-
ment team, resulting in bug
reports that shouldn’t be entered
into the database. The bugs show
up in summary reports, graphs,
and charts, and throw off the true
state of the development effort.
This tends to cause unnecessary
frustration for the development
team!

• Ad-hoc testing, also known
as mainstream usage testing,
doesn’t demand that testers fol-
low a predefined plan, but leaves
them free to use the program in a
way customers would use it in
real-world situations. This often
uncovers bugs that may elude a
strict, regimented test plan.

Better testers produce good
results through ad-hoc testing
because it gives them a chance to
exercise a program in the areas
where they feel it’s weakest. Each
tester should be encouraged to
do some amount of ad-hoc test-
ing during each test cycle.

Beta Stage
The end is in sight! At the beta
stage, the program and documen-
tation should be functionally com-
plete, and all known bugs should
be accounted for (either fixed, in
progress, or deferred). The cycle
of testing continues through each
beta build of the program, but the
test team is not held back from
testing any pieces.

Normally, project managers
enlist the help of end-user testers
during the beta stage. These beta
testers should be far removed
from the planning or develop-
ment of the project, so that they
don’t feel emotionally tied to the
end product. Beta testers should
be warned that they should
expect to find crash bugs and
other problems that may corrupt
their data.

Outside beta testing usually
falls under the jurisdiction of the
test lead engineer. The test lead is
the liaison between the outside

Y 1 9 9 6
testers and the SQA team mem-
bers. All bugs reported by beta
testers should be regression-test-
ed by the test team before the
bugs are committed to the bug
database.

Final Candidate
After a period of repeated test
cycles during beta testing, there
comes a time where the outside
beta testers and the in-house SQA
team stop finding bugs. Remem-
ber, this doesn’t mean there aren’t
any bugs left! What this does
mean is that the remaining bugs
aren’t serious enough or preva-
lent enough to surface in the real
world. Congratulations! You’re at
the final candidate stage.

Prior to announcing a final
candidate build, the test team
should review and regression-
check all bugs (open, closed,
deferred, and so on) that were
entered into the bug-tracking
database. Once the review is com-
plete, the test lead engineer com-
piles a final report. All deferred or
unresolved bugs should be
addressed in an executive sum-
mary, with special emphasis
placed on bugs that are slated to
be fixed in future versions of the
program.

The final report should be
distributed to all parties that were
involved in the project. It’s espe-
cially important that the technical
support team reads and under-
stands the final report, since the
report will spell out any problems
customers may encounter with
this version of the program.

Golden Master
In most companies, the test lead
engineer is responsible for pro-
ducing golden master disks or a
CD-ROM. This final master disk
should have all the packaging,
labels, and documentation of a
final off-the-shelf released product.

The golden master disks
should be produced on a system
that has been checked for integri-
ty. Integrity means that nothing

32 Business
AppleDirections
but the necessary Mac OS soft-
ware is in the System Folder. No
custom icons, games, or any
other software should exist on
this machine. The computer’s
hard disk should be checked for
integrity (correctness of the direc-
tory bitmap, and so on) and
scanned for viruses. All initial win-
dow positions should be double-
checked to make sure they open
in the correct location on screen
when folders and icons are
double-clicked.

Once the first few floppy disks
or CD-ROM discs come back from
duplication, the test lead engineer
should check them for integrity—
again! Although it’s not common,
disk duplication can introduce
new problems, including invasion
of viruses.

On the Importance
of Process
Software testing is the process of
discovering, identifying, reporting
and tracking problems in a prod-
uct. The Software Quality Assur-
ance team performs various tests
such as compatibility, configura-
tion, and stress, through a cycle
J A N U A R
of testing that starts at alpha stage
and goes through final candidate.
There are special tests that are
performed at the golden master
stage to ensure integrity of the
product before and after it goes
through the duplication process.
Having an organized software
testing process in place, which
everyone understands, is the
foundation to creating a bug-less
software product. ♣

Victor Hnyp (victor@prosoftlabs
.com) is president of Prosoft Labs,
an engineering firm based in
Y 1 9 9 6
Pleasanton, California (510-426-
6100) that specializes in the test-
ing of Mac OS– and Windows-
based hardware and software.

Editor’s note: Look for the
second half of this article,
“Producing ‘Bug-Less’ Soft-
ware—Part 2: Bug Chasing
Tactics,” in next month’s
issue.
Developer University Schedule

Listings

Developer University (DU) offers a broad range of Mac OS and Newton pro-
gramming instruction through hands-on classes and self-paced training
products. Classes are offered in Cupertino, California, and through selected
third-party trainers.

The following is a list of upcoming DU course offerings, including when and
where they’re offered and how much they cost.

Advanced C++/5 days/$1,000
March 4–8 Cupertino, CA

Apple Events/AppleScript Programming
5 days/$1,500
January 29 –February 2 Portsmouth, NH
February 12–16 Cupertino, CA

Creating Apple Guide Help Systems
4 days/$1,200
February 12–15 Cupertino, CA

Creating OpenDoc Parts/5 days/$1,500
January 15–19 Cupertino, CA
February 19–23 Cupertino, CA
March 18–22 Cupertino, CA

Macintosh Debugging: Strategies & Techniques
3 days/$900
January 22–24 Cupertino, CA
March 13–15 Portsmouth, NH
Multimedia Development with QuickTime VR
3 days/$900
January 16–18 Cupertino, CA
February 20–22 Cupertino, CA
March 19–21 Cupertino, CA

Newton Programming: Essentials
5 days/$1,500
January 15–19 Cupertino, CA
February 12–16 Cupertino, CA
March 11–15 Cupertino, CA

Newton Programming: OS Enhancements
5 days/$1,500
January 29–February 2 Cupertino, CA
February 26–March 1 Cupertino, CA

Programming with MacApp
On demand—call DU Registrar for more information

Programming with QuickDraw 3D
3 days/$900
January 15–17 Cupertino, CA

Programming with QuickDraw GX/4 days
On demand—call DU Registrar for more information

QuickStart Mac OS Programming/5 days/$1,500
January 29–February 2 Cupertino, CA
March 4–8 Cupertino, CA

Listings 33AppleDirections
Scripting with AppleScript/2 days/$600
January 22–23 Cupertino, CA
February 26–27 Cupertino, CA

Writing Reusable Code
3 days/$900
February 5–7 Cupertino, CA

To register for a class or to get a complete course description by fax, call
the Developer University Registrar at 408-974-4897.
J A N U A R
Course descriptions can also be found electronically at the following
locations:

• AppleLink: Developer Support:Developer Services:Apple Information
Resources:Developer Training:Developer University

• eWorld: Computer Center:Apple Customer Center:Apple Developer Ser-
vices:Developer Information:Developer University

• Internet: http://dev.info.apple.com/du.html

• America Online: Computing:Computing Forums:Development:Mac Devel-
opment Q&A:Developer University ♣
This feature is devoted to informing you about where you can go on the
Internet for online information about Apple Computer, Inc.; its products,
technologies, and programs; Mac OS and Newton programming; and other
subjects that pertain to the business of computer product development.
You’ll find this feature particularly helpful when you view it at the Apple
Directions Web page (located at http://dev.info.apple.com/). There, all the
names of the locations listed in this article are linked to the sites
themselves; clicking the names will take you directly to the relevant Internet
locations. We’ll update this feature every month, based both on what Apple
is doing on the Internet and on your feedback.

Apple Sites
This section describes World Wide Web sites maintained by Apple Computer.

http://dev.info.apple.com/
This site contains the Apple Developer Services and Products page, and is
probably the most important World Wide Web page for you. It contains
Apple Directions Express with live links to other Internet locations and the
online versions of Apple Directions, and develop, the Apple Technical Jour-
nal. It also links you to a variety of other sites that give you access to the
gamut of Apple’s online developer support services.

http://www.apple.com/
This site contains the Apple Computer home page, with links that will let you
go to just about all the other Internet sites maintained by Apple, even the
ones listed separately here.

http://www.info.apple.com/macos/
This is the Mac OS Web site. You can go here for the latest information on
the Mac OS, including details about Copland, white papers on new Mac OS
technologies, marketing and strategic information, and other items to help
you develop new Mac OS products.

http://dev.info.apple.com/dev/technotes/Main.html
This is the Web site for the Apple technical notes series. Check it out this
month for the new technical notes, as well as for recently posted guidelines
in case you want to contribute your own technical notes.

The Internet Page
http://www.info.apple.com/pacific/
This is the Apple Pacific home page, with information about Apple offices
and developer support in the Pacific region, including Japan, Australia,
Canada, and Latin America.

http://www.euro.apple.com/
This is the front door for information about Apple activities—including
developer services—in Europe, with pointers to Internet sites for specific
countries. Sites are currently established for Apple Norway, Apple Italy,
Apple Germany, and Apple Benelux.

www.info.apple.com/newton
www.info.apple.com/dev/newton
These are Apple’s Newton Web pages; the first is called the World of New-
ton, and it houses a variety of information about the Newton platform, pri-
marily for customers. The second is the Newton developer site.

http://coretools.apple.com/opendoc
This is the site of Apple’s OpenDoc home page, featuring Developer Depot,
where you can find the latest OpenDoc release, documentation, and tools,
and Developer Showcase, from which you can download and sample actual
OpenDoc parts!

http://www.info.apple.com/dev/thirdparty/
Apple Fellow Guy Kawasaki set up this Web page to list your hardware and
software products. Fill out the form located at the site to add your products;
that way, everybody on the ’net can find out about what you’re up to.

http://www.amp.apple.com
This is the site of the Apple Multimedia Program (AMP) home page. If
you’re a multimedia developer or considering getting into multimedia, you’ll
want to check out the information on this page about Apple’s multimedia
technologies, as well as the links provided to other Internet sources about
multimedia. It also includes the AMP Member Showcase, a searchable data-
base of multimedia developers.

http://www.apple.com/whymac/
The official source for official Apple ammunition to fight the war against
Windows 95, including the extensive series of Windows 95 vs. Macintosh
Updates, prepared in the wake of the Windows 95 release.

Y 1 9 9 6

34 Listings
AppleDirections
http://www.info.apple.com/gomobile/
This site contains complete information about PowerBook computers and
the full line of Apple mobile computing solutions.

http://www.info.apple.com/dev/evangelism/powertalk/
Apple’s PowerTalk home page, with resources for PowerTalk programmers.
It currently contains the StarNine gateways recently licensed by Apple:
Mail*Link Internet for PowerTalk, Mail*Link MS for PowerTalk, and
Mail*Link QM for PowerTalk, which give Mac OS users access to Internet
mail, StarNine Mail, or C.E. Software’s QuickMail. You can download the
gateways for no charge.

http://www.info.apple.com/qd3d/
Apple’s QuickDraw 3D home page contains everything you need to know
about QuickDraw 3D, including QuickDraw 3D applications you can “test
drive.”

http://www.info.apple.com/powermac/powermac.html
http://www.info.apple.com/ppc/ppchome.html
These are two useful sites for information about Power Macintosh
computers.

http://quicktime.apple.com
This site contains the QuickTime Continuum page with news and technical
and marketing information about QuickTime.

http://qtvr.quicktime.apple.com
This is the location of the QuickTime VR page.

http://www.info.apple.com/gx/gx.html
This site contains the QuickDraw GX home page.

http://www.info.apple.com/education
Here’s where you’ll find the Apple Education home page with information
about Macintosh computers for the education markets. You can also use
online forms located at this site to request product specifications, informa-
tion about the Apple Education Series (bundled products), and technical
support from Apple engineers.

http://www.mae.apple.com
The Macintosh Application Environment (MAE) home page.

http://pippin.apple.com
The Pippin Web page contains the latest information about Apple’s PowerPC
processor–based, low-cost CD playback device.

http://www.eworld.com/
Go to this location to find content and services from eWorld, Apple’s online
service.

http://www.apple.com/documents/otherappleservers.html
This is the site of the Apple Internet Servers page. Once you’ve exhausted
the obvious Web sites just listed, this page will give you ideas about where
else to go on the Internet to find the information you need. This page
includes lists of other Web sites as well as Gopher and FTP sites.
J A N U A R
Non-Apple Sites
We can’t guarantee the information the following sites contain, since they’re
not created by Apple, but we think you’ll find them useful and interesting.
They’re listed alphabetically, by site address.

ftp://ftp.sri.ucl.ac.be/pub/
A Belgian reader alerted us to this FTP site, where you can find French ver-
sions of Macintosh Internet software, including Eudora, Fetch, Finger, FTPd,
Gopher Surfer, NCSA Mosaic, NCSA Telnet, TurboGopher, and many other
applications. An affiliated World Wide Web site (http://www.sri.ucl
.ac.be/SRI/jpk/logIntMacFr.html) describes—en Français—what’s available
at the FTP site.

http://home.mcom.com/home/internet-search.html
This site contains the Internet Search page, which gives you access to
InfoSeek, Lycos, and WebCrawler, three excellent Web search engines. If
you use Netscape, you can reach this location just by clicking the Net
Search button.

http://hyperarchive.lcs.mit.edu/HyperArchive/Abstracts/snd/util/
HyperArchive.html
This site, which is maintained by some of the good folks at the Massachu-
setts Institute of Technology, contains 200 Macintosh applications and utili-
ties (give or take a few) that can be downloaded for the price of connection
charges.

http://rever.nmsu.edu/elharo/faq/vendor.html
The Macintosh Vendor Directory, a directory of companies that make and
sell products for the Macintosh computer.

http://www.ape.com/webstar/
This site provides a database of all the Macintosh computer-based Web
sites its owner can find, so far nearly 1,000 entries strong. It also lists out-
standing Macintosh sites, as well as some losers that refuse to move to a
Macintosh server solution.

http://www.astro.nwu.edu/lentz/mac/programming/tools.html
This site is a terrific source for Apple and non-Apple Macintosh program-
ming tools.

http://www.cilabs.org/
The location of the CI Labs home page, which contains a great deal of Open-
Doc content.

http://www.class.com/MacTech/URLs.html
This site contains a useful list from MacTech magazine of Internet locations
on a variety of subjects, most of them pertaining to the technical aspects of
Mac OS development.

http://www.cs.brandeis.edu/~xray/mac.html
Nathan’s Everything Macintosh page is a treasure trove of Macintosh informa-
tion; it contains a thorough listing of Apple and other corporate sites that per-
tain to Mac OS development as well as games, e-mail mailing lists, periodi-
cals, a listing of FTP sites, software archives, and even Apple II information.
Y 1 9 9 6

Listings 35AppleDirectionsAppleDirections
http://www.digitool.com/
If you’re looking for information on Macintosh Common Lisp (MCL), this is
the place to go. Digitool’s Web page contains information on MCL 3.0 and
other MCL products, as well.

http://www.freepress.com/myee/ultimate_mac.html
This site contains the ULTIMATE Macintosh page, including more Mac OS
information and software than you could possibly imagine exists. We think
you’ll particularly enjoy the software archives and games sites, from which
you can download real-live software and play with it.
J A N U A R

This list contains Internet “stuff” (for lack of a more descriptive term)
we’ve just become aware of, thanks to Apple Directions readers inside
and outside Apple. Know of a particularly useful site? Whether it’s a Web
page, a list server, an FTP site, or a newsgroup, let us know about it and
we’ll consider adding it to this feature next month, along with your
name (!). Send your suggestions to the Internet address a.directions@
applelink.apple.com.

Guy Kawasaki’s List Server
Guy calls his list server the EvangeList; it’s for official and nonofficial
Apple evangelists who want to hear and help spread the good word about
Apple. Guy gets information from the press, the Web, Apple internal com-
munications, press releases, and his considerable industry contacts,
selects the most useful, interesting—and fun—material, and sends it on
to the list. When you join, you can expect to get a couple of dozen notes
from Guy each week. More than 10,000 people are already on the list; we
think you’ll want to be, too. For information on how to join, send an e-mail
message (any message will do) to macway-request@abs.apple.com.

Don’t Forget About Apple Directions Express!
This is a reminder to subscribe to Apple Directions Express, our online
digest of business news and information from Apple, sent to you biweek-
ly over the Internet. It includes pointers to Internet locations and other
sources of more detailed information. It’s free, it’s up-to-the-minute, and
it’s a terrific source for information you need about Apple Computer (even
if we do say so ourselves!).

Here’s what reader Alex Gollner said about issue #2:
It has just the right balance of structure-summary-content. All the

stories are relevant to me. . . . Each story tells me the right amount of
information, and gives me the links should I want more.

You can subscribe by sending e-mail to adirections@thing1.info.apple
.com. In the subject field for your message, type the string “subscribe
<your real name>”.

http://www.opendoc.apple.com
You can download the just-released OpenDoc software development kit
from this official Apple site.

http://www.ugconnection.org/vendors/vendors.html
This is the Web site for the User Group Connection. It contains resources
and services to market your products to Apple’s most influential and
enthusiastic users: user groups. The site includes an online user group

New This Month/From Our Readers
http://www.guideworks.com/
This non-Apple site is the location of the guideWorks home page; it contains
so much information about Apple Guide that you can think of it as the Apple
Guide home-away-from-home page.

http://www.icsi.net/~crfrank/newpcTales2.toc.html
Check this page out! An enterprising, very pro-Macintosh NASA employee
put it together to debunk common Macintosh myths. There’s a ton of good
data here to help you do the same.
Y 1 9 9 6

locator, a listing of user group Web pages, a monthly newsletter, and
excerpts from a new book called How to Market With Computer User
Groups.

http://www.islandnet.com/~quill/c3data.html
This is a non-Apple site containing The Complete Conflict Compendium;
its owners, Quill Services Ltd. and MacSymum POWER Systems, have
the goal of listing all software conflicts on the Macintosh computer and
the cures for them. Forms at the site let you report conflicts and register
your e-mail address so you can be notified if others report conflicts hav-
ing to do with your products.

http://www.machack.com/
This is the home page for MacHack, an annual conference for hackers
that work on the Macintosh computer. The conference features an all-
night hack contest, usually with very interesting results. At the 1995 con-
ference, attendees decided on the ten issues they’d most like Apple Com-
puter to address. You can find Apple’s responses to those issues, results
from the hack contest, and information about the next conference at this
Web site.

http://www.memphisweb.com/mathew/default.html
http://www.memphisweb.com/nammac/default.html
Need to find programmers and others to work on developing Macintosh
products? Go to these locations for help. The first is called MATHEW,
which stands for Macintosh Talent, Help Wanted. All companies and job
seekers can post want-ads there for free, and the database is searchable
by city, state, and expertise. The second site is a free directory of individ-
uals and companies available for short-term tasks or contract work, also
searchable by city, state, and expertise.

http://www.utu.fi/~jsirkia/mac/
This is the Cult of Macintosh Web site, another “everything Macintosh”
compendium of information for Macintosh lovers. It contains dozens
(maybe more than 100) links to other sites containing everything you’d
ever want to know about the Macintosh computer, as well as sites with
tools, free software, and so on.

http://www.dsu.edu/~bitzm/why_buy_mac/index.html
This site contains a compelling article called “Why Should I Buy an Apple
Macintosh System?”

http://www.umd.umich.edu/~nhughes/dna/stories/adamson95.html
This is Douglas Adams’s Web page, containing his thoughts on Windows
95. We think you’ll love it.

36 Listings
AppleDirections
Errata and

Clarifications

Here at Apple Directions we want
to be as accurate and complete as
possible, to give you the best pos-
sible information on which to
make your business decisions.
Because of this, we need to cor-
rect a mistake in the article “Cop-
land Drivers—Time to Put the
Pedal to the Metal,” which
appeared on page 17 of the
December 1995 issue.

In the section “High-Level
Families,” the article stated:

You can implement Copland
printer drivers using the Quick-
Draw GX printing interface
model. Existing QuickDraw dri-
vers will work without changes
APDA Ordering Information
For those who need to call the U.S. AP
APDA@applelink.apple.com. More det

• Internet: http://www.info.apple.
• AppleLink: Developer Support:D
• eWorld: in the Developer Corne
under Copland, but at slower
speeds and without the many
improved performance features
of QuickDraw GX.

The second sentence is in
error and should read as follows:

Existing QuickDraw GX dri-
vers will work without changes
under Copland, but at slower
speeds than if they are updated
to take full advantage of Open
Transport.

The point that needs to be
clarified here is that, for architec-
tural reasons, no QuickDraw
printer drivers will work with
Copland. Copland will include a
single printing architecture that
provides the features of both
QuickDraw and QuickDraw GX
printer drivers, with the same or
better performance that what Mac
J A N U A R

To place an APDA order from within the
DA office from abroad, the number is 71

ailed APDA ordering information is availabl
com/dev/apda.html
eveloper Services:APDA

r of the Computer Center
OS users experience today. In
addition, Apple has pledged that
QuickDraw GX printer drivers
will continue to work with Cop-
land (assuming the drivers have
no other incompatibilities with
Copland).

What does this affect? Not your
software—QuickDraw and Quick-
Draw GX programs will continue
to work under the Copland oper-
ating system (assuming that other
Copland compatibility issues, if
any, have been resolved).

Will your customers’ printers
be affected by the switch to Cop-
land? It depends on the type of
printer. Since Apple already has a
LaserWriter GX driver (which
prints to most if not all Post-
Script™ printers), anyone with a
PostScript printer will still be able
Y 1 9 9 6

United States, contact APDA at 800-282
6-871-6555. You can also reach us by A
e at the following locations:
to print while running Copland.
However, if you sell a printer and
ship your own printer driver with
it (presumably to access printer-
specific features), you will want to
prepare for the Copland operat-
ing system by creating a Quick-
Draw GX printer driver.

If you sell a non-PostScript
printer, your customers will not
be able to print under Copland
while using your current printer
driver. The solution here is for
you to create a QuickDraw GX
printer driver that runs with
today’s System 7.5; such a driver
will continue to work with the
Copland operating system. ♣
http://www.kaidan.com
Here’s a reader-recommended site that will be especially interesting to
QuickTime VR developers. The site contains information about add-on
lenses and QuickTime VR camera mounts for QuickTake cameras.

http://www.metrowerks.com/
This is the Metrowerks Web site, with information about its CodeWarrior
PowerPC development tool.
http://www.nisus-soft.com/~nisus/
The location of the Nisus Software home page, which we list partly because
of its clever layout. The page looks like a Macintosh desktop; clicking the
icons on the desktop takes you to Nisus’s various Web postings. Just for
fun, click the Trash icon and see where you end up! ♣
-2732; in Canada, call 800-637-0029.
ppleLink at APDA or by e-mail at

	Inside This Issue
	Apple’s COMDEX Windfall
	International Development From Here to Copland
	The Year That Was
	Working With Apple: Three Perspectives
	Apple Ranks #1 in Personal Computer Sales in the U.S.
	New TechnotesGive DevelopersMore Options
	Chinese Dictation Kit Wins COMDEX Asia “Best of Best” Award
	System Software and SDK Editions, January 1996
	OpenDoc Human Interface FAQs
	Demystifying DSOM
	Holiday Magic
	Ideas for Maximizing Installed Base Sales
	Producing “Bug-Less” Software— Part 1: The Testing Process
	Developer University Schedule
	The Internet Page
	Errata andClarifications

