
How to read Apple PILOT data files from Pascal

Revised: 11/30/84
Security: Everyone

How to read Apple PILOT data files from Pascal

==

Though it may appear that data files are randomly accessible text files, they
are actually block structured files, two strings long, with 255 per block.
Records 0 and 1 are contained in relative block zero, 2 and 3 are in
block 1, etc. The Pascal construct which defines this file format is:

 VAR PILOTFILE: FILE OF STRING [255];

The data record associated with this file has the description PILOTFILE^,
with a string of length 255. This file may be sequentially or randomly
accessed using the commands Get, Put and Seek. See the Pascal Language
Reference manual for details.

To open an existing file, use the Reset command; a new data file may be
created using Rewrite. These commands are the same as the PILOT commands Fix
and Fox respectively. Always Close a new file using the Lock option to
record the data file in the diskette directory.

PASCALPGM Links to the Pascal program contained in the file PASCALPGM.code.
Compile any intrinsic library units this program requires with the libraries
found on your Apple PILOT Author Diskette or Lesson Diskette using the Pascal
1.0 compiler. The Apple PILOT system uses a special 48K run-only version of
Pascal 1.0, which requires different intrinsics due to its unique storage
allocation.

The linkage from PILOT to Pascal is one-way: data cannot be transmitted from
PILOT to Pascal, except by data files on diskette. When the Pascal program
ends, the PILOT lesson diskette reboots automatically and begins executing
the Hello program if any. Programs running in this environment have
approximately 10K less user storage space than in the standard Pascal system.

The first compiled procedure in the outer block of any Pascal program running
under the PILOT system should be:

 Procedure Syserror;
 Begin
 End;

Tech Info Library

System errors automatically divert control to this procedure, with IOResult
set to the corresponding error number. The default action is:

 A. If the error is non-fatal, execution of the procedure currently executed
 is aborted. Execution of its calling procedure is resumed.

 B. When the error is fatal, the program terminates with an appropriate error
 message. Any additional error checking or recovery should be done in this
 procedure.

The following example prints the contents of any Apple PILOT data file:

 Program Datalist;

 Var PILOTFILE: file of string [255];
 Filename: string;
 RECNO: integer;

 Procedure Syserror;
 Begin
 End;

 Procedure Pause;
 Begin
 Writeln;
 Write ('Press RETURN to continue...');
 Readln;
 Writeln
 End;

 Begin
 Page (output);
 Write ('List which data file? ');
 Readln (Filename);
 Writeln;
 Filename := CONCAT (Filename,'.data');
 RESET (PILOTFILE, Filename);
 RECNO := 0;
 While not EOF (PILOTFILE) Do Begin
 Writeln ('Record ',RECNO,': ',PILOTFILE^);
 Get (PILOTFILE);
 RECNO := RECNO + 1;
 If RECNO MOD 20 = 0 Then PAUSE
 End;
 Writeln;
 Writeln ('End of file: ',RECNO,' records listed.');
 Pause
 End.

Apple Tech Notes

600Tech Info Library Article Number:

