
Short Description Of The PowerPC 601 Processor (3/94)

Revised: 3/11/94
Security: Everyone

Short Description Of The PowerPC 601 Processor (3/94)

==

Article Created: 8 March 1994

TOPIC ---

This is a short description of the features of the PowerPC 601 processor which
will be used for Apple Computer's first RISC products.

The organization of this description follows that of the PowerPC ISA document.
Some familiarity with processor architectures, particularly of RISC processors,
is assumed in the following. Since the PowerPC 601 is close to "traditional"
RISC processors in many ways, the amount of detail in this document will reflect
areas which are different. In areas where PowerPC (and/or the 601) are similar
to normal chips, very little verbage will be spent.

DISCUSSION --

Architecture

The 601 is the first chip to implement the new PowerPC architecture (as
described in the Version 1.01 documents). However, since it is intended as a
bridge chip for IBM, it also includes the existing POWER instruction set. It
is, therefore, the union of the two instruction sets.

There are several areas where the architectures differ in a rather fundamental
way (for example, virtual address translation); in these areas, PowerPC
prevails.

Branch Processor

The Branch Processor is logically responsible for all instruction fetching of
the PowerPC architecture. It also decodes instructions to determine to which
execution unit they should be sent for execution. The 601 uses pre-fetching to
attempt to keep ahead of the execution units. Up to 9 instructions are
contained within the Branch Processor, in a so-called "pre-fetch pipeline". In
the 601, the bottom stage of the pipeline is what is normally referred to as the
"Decode" stage of traditional RISC pipelines.

Tech Info Library

As instructions fall out of the bottom of the pipe (that is, proceeding from
Decode to Execute, by being sent to the Fixed Point and/or Floating Point
processors), the pipeline is filled by the pre-fetch logic.

Branch Instruction Processing:

The Branch Processor in PowerPC (as in POWER) "executes" all branch
instructions. Note that "executing" a branch simply means to continue fetching
from a different location than the current sequential stream implies. The 601
examines the last 4 stages of the pre-fetch pipeline, looking for branches.

Unconditional branches cause the pipeline stages above (and, including) the
stage in which the branch is detected to be "flushed". Fetching of instructions
to re-fill the pipe are then made from the "target address" of the branch.
(Note that a conditional branch whose condition is determined early enough is
processes the same as an unconditional branch.)

Conditional branches whose condition is not yet known when processed by the
Branch Processor are "predicted". That is, instruction pre-fetching will be
attempted along a path (taken vs. not taken) which is "guessed" by the hardware.
 In the 601, this prediction is based upon the direction of the branch (that is,
the sign of its displacement). A "backwards" branch is predicted as taken; a
"forwards" branch is predicted as not taken.

When the first instruction of a predicted path reaches the Decode stage (that
is, the bottom of the pre-fetch pipe), and the condition is not yet known, the
Branch Processor will stall, waiting for an indication of whether its prediction
was correct. When the condition becomes known, the Branch Processor will either
let the instruction in Decode proceed to Execute (if it predicted correctly) or
flush the entire pipeline and re-fetch from the correct path.

When a branch is detected early enough, the pipe can be refilled before it would
run "dry". As long as branches can be detected (and, for conditional branches,
the proper direction can be determined) early enough, branches "execute" in
"zero" time. In the 601, this translates into a general rule that branches
which are separated by at least two non-branch instructions will execute without
branch-induced delays.

In the 601, only one "predicted" conditional branch can be "outstanding" at any
time.

Mini-TLB.

Code fetches have to be translated like any other memory access. In order to
minimize the overhead of translating every code fetch, the Branch Processor
contains a copy of the last four page translations which were most recently
fetched. Any fetch to one of these pages will not cause any explicit address
translation. However, when a branch is taken to a page not contained within
this mini-TLB, the branch is sent to the Fixed Point Processor, which performs
the address translation. The resulting translation will update one of the 4
entries in the mini-TLB.

Accesses to addresses not contained in the mini-TLB will not be attempted until
the branch is known to be taken. Thus, conditional branches will incur extra
delay if they are not to one of the 4 most recently used pages.

Non-Branches

PowerPC includes a group of instructions which primarily operate upon the
Condition Register. They are described within the Branch Processor chapter,
because they were processed by the Branch Processor in the original POWER
chip-set.

However, in the 601, only branch instructions are processed by the Branch
Processor. All of the other "branch processor" instructions are actually
executed by either the Fixed Point Processor or the "Sequencer".

Fixed Point Processor

The Fixed Point Processor is primarily intended to execute the Fixed Point
instructions of PowerPC. However, as mentioned above, the 601's Fixed Point
Processor also executes most of the non-branch instructions described in the
PowerPC Branch Processor chapter.

The Fixed Point Processor also performs all address translation. Thus, all
loads and stores (both Fixed and Floating Point) have their address generation
(that is, computing the Effective Address) and translation (converting from
EA->VA->RA) executed within the Fixed Point Processor. (A complete description
of Address Translation appears as a separate section in this document).

In general, all Fixed Point instructions execute in one clock, and the result of
the operation is immediately avaiable to a successive instruction. The
exceptions to this rule are Loads (discussed below), Multiplies (which take 5
clocks for short results and 9 clocks for long) and Divides (which take up to 36
clocks). Multply and Divide instructions actually "stall" in the Execute stage
of the Fixed Point Processor, thereby preventing execution of any following
Fixed Point instructions until they complete.

The important timing number of Loads is its "latency". For example, if one has
a "dependent" operation, how many extra clocks are required. In the 601,
assuming that the data is aligned and in the cache, one "extra" clock is
required to load the register with the correct data. This implies a general
rule that one should have at least one instruction between a load and any
dependent instruction in order to eliminate extra clocks.

Floating Point Processor

The Floating Point Processor executes all of the Floating Point instructions of
PowerPC. In general, Floating Point instructions take 3 clocks to produce a
result, with the exception being FP Divide, which takes up to 31 clocks. Thus,
sequences of dependent Floating Point computations will execute at 1 every 3
clocks. However, sequences of Adds, Subtracts and Multiplys which can overlap
their computations so that no dependencies are within the 3 clock latency will
execute at 1 per clock.

A Floating Point Add or Subtract can be "issued" every clock, as long as its
sources are available. Floating Point Multiplys can be issued every other
clock. A Floating Point Divide stalls the entire unit.

Note that all Floating Point Loads and Stores require processing by the Fixed
Point Processor (for address computation and translation). Thus, they fill a
slot in both units.

Address Translation

The 601 implements the PowerPC translation mechanism, which is different from
that of the original RS/6000s and the RSC. (See the Storage Control chapter in
the PowerPC Operating Environment Architecture document for details.)

The PowerPC documents define the memory structure which is used for address
translation (the Hash Table). Like most processors, the 601 uses a Translation
Lookaside Buffer (TLB) to "cache" recently used translations to minimize the
overhead of a full "table lookup" for translations. Addresses which translate
to "recently used" pages will be found within the TLB, thereby circumventing the
complete process of table walking.

The 601's TLB is organized as a 2-way set-associative cache with 128 sets, using
LRU updating. Thus, up to 256 translations are available with no extra
processing time required. (Note: if an operating system uses the full
capabilities of the PowerPC translation mechanism, no explicit "flushing" of the
TLB is necessary.)

If a translation is not available within the TLB, the Sequencer is invoked to
perform the actual Hash Table walking.

Cache

The 601 contains a 32 KB Unified cache, organized as 8-way set-associative, with
64 sets, using LRU updating. Each cache line is 64 Bytes, divided into two
"sectors"; a sector is the unit which is processed as a single burst
transaction on the bus. (The term Unified means that the cache is shared
between Code and Data.)

The cache is normally run in "Store-In" (CopyBack). This means that stores are
performed by updating the cache contents and marking that cache sector as
"dirty". Subsequent re-use of the cache line will cause dirty sectors to be
written to memory.

Sequencer

In addition to the "architected" functional units described in the PowerPC
documents, the 601 also contains a micro-coded "Sequencer". This sequencer
performs any of the "hard" tasks which the hardware can't. This includes such
things as Loads and Stores to "I/O" space (that is, accesses where the Segment
Register has its T-bit == 1), TLB misses, exception processing (that is,
processing interrupts).

Note that the Sequencer is normally inactive. When it does become activated

(for example, by a TLB miss), all processing in the Branch and Fixed Point and
Floating Point Processors is suspended. In other words, the Sequencer "takes
over" the hardware.

(The only reason for mentioning the Sequencer is that it is referred to in
various other documents.)

Support Information Services

Copyright 1994, Apple Computer, Inc.

14834Tech Info Library Article Number:

