
Macintosh: Determining Video Card Status via Software (2 of 2)

Revised: 12/4/89
Security: Everyone

Macintosh: Determining Video Card Status via Software (2 of 2)

==

Article Created: 2 November 1989
Article Last Reviewed: 14 July 1992
Article Last Updated:

TOPIC ---

What follows is an MPW Assembly listing that demonstrates, for a given GDevice,
how to determine the minimum and maximum depths that the device supports:

 PRINT OFF
 INCLUDE "Traps.a"
 INCLUDE "ToolEqu.a"
 INCLUDE "QuickEqu.a"
 INCLUDE "SysEqu.a"
 INCLUDE "PackMacs.a"
 INCLUDE "SlotEqu.a"
 INCLUDE "ROMEqu.a"
 INCLUDE "VideoEqu.a"
 PRINT ON

DISCUSSION --

GetScreenMinMax PROC EXPORT
;---
; PROCEDURE GetScreenMinMax(whichScreen : gdHandle;
; VAR minDepth, minMode,
; maxDepth, maxMode : Integer);
;---
; This nasty little procedure figures out, for a given GDevice, what the
; minimum and maximum depths that the device supports. It does this by
; using the Slot Manager to traverse the sResources that are in ROM on
; the video interface card.

StackFrame RECORD {A6Link},DECR

Tech Info Library

ParamSize EQU *-8
whichScreen DS.L 1
pMinDepth DS.L 1
pMinMode DS.L 1
pMaxDepth DS.L 1
pMaxMode DS.L 1
Return DS.L 1
A6Link DS.L 1
spBlk DS SpBlock.spBlockSize
slotModesPtr DS.L 1
nextMode DS.W 1
LocalSize EQU *
 ENDR

 WITH StackFrame,SpBlock,vpBlock

 LINK A6,#LocalSize

 MOVE.L pMinDepth(A6), A0 ;Get ptr to minDepth VAR
 MOVE.W #$7FFF, (A0) ;Init to MAXINT
 MOVE.L pMaxDepth(A6), A0 ;Get ptr to maxDepth VAR
 CLR.W (A0) ;Init to zero

 ; We need to convert the GDevice's refNum to its unit number. Then, we
 ; can look in the unit table for a handle to a NewDCE block. This
 ; will tell us in which slot the card for this display is.

 MOVE.L whichScreen(A6), A0 ;Get the gDevice handle
 MOVE.L (A0), A0 ;Get a ptr to the gDevice
 MOVE.W gdRefNum(A0), D0 ;Get the device's refNum
 NOT.W D0 ;Get the unit number
 ASL.W #2, D0 ;Times 4 (SizeOf UTableEntry)
 MOVE.L UTableBase, A0 ;Get a pointer to the Unit Table
 MOVE.L 0(A0, D0.W), A0 ;Get the handle to the NewDCE
 MOVE.L (A0), A0 ;Get ptr to the NewDCE

 ; We only want to deal with sResources on the card that are for Apple-
 ; style video devices. (We only care about the data format; it really
 ; doesn't matter who made the hardware.) Set up information about the
 ; type of sResource that we want.

 MOVE.B dCtlSlot(A0), spBlk+spSlot(A6) ;Put slot of device into parmBlock
 CLR.B spBlk+spID(A6) ;Start with first sResource
 MOVE.W #catDisplay, spBlk+spCategory(A6) ;Only want Display sResources
 MOVE.W #typVideo, spBlk+spCType(A6) ;Only want Video sResources
 MOVE.W #drSwApple, spBlk+spDrvrSW(A6) ;Only want Apple-format sResources
 MOVE.B #1, spBlk+spTBMask(A6) ;Don't care whose hardware

 ; Now go and get the first resource that matches our specs.

 LEA spBlk(A6), A0 ;Pointer to block in A0
 _sNextTypesRsrc ;Get sResource that matches
 TST.W D0 ;Was one found?

 BNE BadExit ;Nope. Oh well.

 ; We now have a pointer to the sResource List (in spBlk.spsPointer). This
 ; sResource List has all of the modes that the card will currently support.

 MOVE.L spBlk+spsPointer(A6), slotModesPtr(A6) ;Save the result
 MOVE.B #128, nextMode(A6) ;Start with first video mode

REPEAT
 ; For Apple-style video data, the first video mode is 128, and they proceed
 ; sequentially from there, with no gaps.

 MOVE.B nextMode(A6), spBlk+spID(A6) ;Want entry for nextMode
 MOVE.L slotModesPtr(A6), spBlk+spsPointer(A6) ;Restore ptr to modes sRsrc
 LEA spBlk(A6), A0 ;Ptr to our parameters
 _sFindStruct
 TST.W D0 ;Was it there?
 BNE NoMoreModes ;Nope. We're done.

 ; spBlk.spsPointer now contains a pointer to the mode information
 ; structure we just got.

 MOVE.B #mVidParams, spBlk+spID(A6) ;We want the video parms data
 LEA spBlk(A6), A0 ;Pointer to param block
 _sGetBlock ;Get the video parms data
 TST.W D0 ;It should always be noErr!
 BNE.S BadExit ;It's not. Bail out!

 ; spBlk.spResult contains a pointer to the video parms data block. Now
 ; we check to see if we have a video mode that QuickDraw can deal with.

 MOVE.L spBlk+spResult(A6), A0 ;Get pointer to video parms
 MOVE.W vpCmpCount(A0), D0 ;How many components/pixel?
 CMP.W #1, D0 ;Can only handle 1
 BNE.S @1 ;Don't count this mode
 MOVE.W vpPixelSize(A0), D0 ;How many bits/pixel?
 CMP.W vpCmpSize(A0), D0 ;Does it match component size?
 BNE.S @1 ;Nope. QD can't handle it.

 ; D0 now contains a valid pixel depth, and nextMode(A6) contains the
 ; mode that has this pixel depth. Update the minDepth, maxDepth, and so
 ; on variables if needed.

 MOVE.L pMinDepth(A6), A0 ;Ptr to user's minDepth
 CMP.W (A0), D0 ;Is this mode less than minDepth?
 BGE.S @2 ;Nope. Don't update.

 ; The pixel size in D0 is less than the pixel size that we have stored in
 ; minDepth so update minDepth and store this mode into minMode.

 MOVE.W D0, (A0) ;Update minDepth
 MOVE.L pMinMode(A6), A0 ;Get pointer to user's minMode
 CLR.W D1 ;Start with an empty word

 MOVE.B nextMode(A6), D1 ;Get this mode
 MOVE.W D1, (A0) ;And save it to user's minMode

@2
 MOVE.L pMaxDepth(A6), A0 ;Ptr to user's maxDepth
 CMP.W (A0), D0 ;Is this mode > maxDepth?
 BLE.S @1 ;Nope. Don't update.

 ; The pixel size in D0 is greater than the pixel size that we have
 ; stored in maxDepth, so update maxDepth and store this mode into
 ; maxMode.

 MOVE.W D0, (A0) ;Update maxDepth
 MOVE.L pMaxMode(A6), A0 ;Get pointer to user's maxMode
 CLR.W D1 ;Start with an empty word
 MOVE.B nextMode(A6), D1 ;Get this mode
 MOVE.W D1, (A0) ;And save it to user's maxMode

@1
 ; Either QuickDraw couldn't handle this video mode, or we're done
 ; updating the minDepth and maxDepth variables. Now we have to dispose
 ; of the video parms block we just got.

 MOVE.L spBlk+spResult(A6), spBlk+spsPointer(A6) ;The pointer to vidParms
 LEA spBlk(A6), A0 ;Pointer to our param block
 _sDisposePtr ;Release this block

 ADDI.B #1, nextMode(A6) ;Try the next mode
 BRA.S REPEAT

BadExit
 ; Something went wrong. Set all of the user's variables to zero and
 ; return.

 MOVE.L pMinDepth(A6), A0 ;Ptr to user's minDepth
 CLR.W (A0) ;Set to zero
 MOVE.L pMinMode(A6), A0 ;Ptr to user's minMode
 CLR.W (A0) ;Set to zero
 MOVE.L pMaxDepth(A6), A0 ;Ptr to user's maxDepth
 CLR.W (A0) ;Set to zero
 MOVE.L pMaxMode(A6), A0 ;Ptr to user's maxMode
 CLR.W (A0) ;Set to zero

 BRA.S NoMoreModes ;Standard clean-up

NoMoreModes
 ; When we get here, _sFindStruct couldn't find the mode that we were
 ; for, so there must not be any more. We've looked through all of the
 ; modes so we're done.

 UNLK A6 ;Release locals
 MOVE.L (SP)+, A0 ;Get return address
 ADDA.L #ParamSize, SP ;Pop input params off stack

 JMP (A0) ;And return to caller
 DC.B "GETSCREE" ;Name of routine for debuggers

 END

Copyright 1989 Apple Computer, Inc.

4726Tech Info Library Article Number:

