
Pascal III: Accessing the extra memory (1 of 5)

Revised: 11/30/84
Security: Everyone

Pascal III: Accessing the extra memory (1 of 5)

==

Apple III Pascal is upwardly compatible from Apple II Pascal. One of the
constraints this imposed on the design of Pascal III was the restriction of
the data space to 64K bytes. This restriction has been made clear on all
specifications of the product. However, since the system uses additional
space for SOS, drivers, graphics, the interpreter and code segments, this
restriction may still interfere with programs that use large quantities of
data.

To illustrate the steps involved in accessing more data, below are some
small assembly routines. They ask SOS to allocate more space for the
program, allow transfers of data back and forth to that space, then
deallocate the space. On top of that is built a simple string package which
stores up to 128K of string values in this space. Though the memory within
this space may be managed only in the simplest of ways, the space can still be
very useful.

The routines consists of three portions:

 A. An assembly language routine containing macros that the SOS interface
 needs.

 B. A fancy version of MOVELEFT that moves bytes from one location in banked
 memory to another. It understands the memory addressing of the Apple III,
 and so it increments pages accordingly.

 C. A Pascal unit that uses the first two programs to implement the string
 routines.

 ; Macro Definitions

 .Macro Pull
 ; Pull 2 bytes off the stack and store them
 PLA
 STA %1
 PLA
 STA %1+1

Tech Info Library

 .EndM

 .Macro Push
 ; Load 2 bytes and put them on the stack
 LDA %1+1
 PHA
 LDA %1
 PHA
 .EndM

 .Macro Return
 ; Load the return address, PUSH it and RTS
 Push %1
 RTS
 .EndM

 .Macro EnterProc
 ; Save the return address
 Pull %1
 .EndM

 .Macro EnterFunc
 ; Save the return address and kill the 4 byte bias
 EnterProc %1
 PLA
 PLA
 PLA
 PLA
 .ENDM

 .Macro PushTrue
 ; Put a Boolean True on the stack
 LDA #0
 PHA
 LDA #1
 PHA
 .ENDM

 .Macro PushFalse
 ; Put a Boolean FALSE on the stack
 LDA #0
 PHA
 PHA
 .ENDM

 .Macro P_A_Word
 ; Copies a word from a Pascal Var to assembly language
 .If %1 & 0FF00 <> 0
 WrongOrderInA_P_Word
 .ENDC
 LDY #0
 LDA (%1),Y

 STA %2
 INY
 LDA (%1),Y
 STA %2+1
 .ENDM

 .Macro A_P_Word
 ; Copies a byte from a assembly lang word to a Pascal word
 .IF %2 & 0FF00 <> 0
 WrongOrderInA_P_Word
 .ENDC
 LDY #0
 LDA %1
 STA (%2),Y
 INY
 LDA %1+1
 STA (%2),Y
 .ENDM

 .Macro P_A_Byte
 ; Copies a byte from a Pascal byte to assembly language
 .If %1 & 0FF00 <> 0
 WrongOrderInP_A_Byte
 .EndC
 LDY #0
 LDA (%1),Y
 STA %2
 .ENDM

 .Macro A_P_Byte
 ; Copies a byte from assembly language to a Pascal word
 .If %2 & 0FF00 <> 0
 WrongOrderInA_P_Byte
 .ENDC
 LDY #0
 LDA %1
 STA (%2),Y
 TYA
 INY
 STA (%2),Y ; Clear highbyte of Pascal var
 .ENDM

 .Macro SOSCall
 ; Framework for calls to the SOS memory manager
 BRK
 .Byte %1
 .Word %2
 .ENDM

 Temp1 .EQU 0E0
 Temp2 .EQU 0E2
 Temp3 .EQU 0E4
 Temp4 .EQU 0E6

 ; Procedure Allocate(Var NumPages,Segnum,Bank,SegBase:
 integer);external;
 ; {allocates a chunk of SOS memory:
 ; Input:
 ; NumPages: Maximum number of pages to try for.
 ; Output:
 ; NumPages: Number of pages actually allocated.
 ; SegNum: SOS Segment number (for deallocate)
 ; Bank: Starting address bank number
 ; SegBase: Starting address byte address ($0200..$9E00)}

Apple Tech Notes

639Tech Info Library Article Number:

