
ABS Tech Note: AWS23 SHMAT Limitations (6/94)

Revised: 6/24/94
Security: Everyone

ABS Tech Note: AWS23 SHMAT Limitations (6/94)

==

Article Created: 23 June 1994

TOPIC ---

This technical note discusses a memory limitation that may be encountered by
UNIX COFF (Common Object File Format) applications using shared memory on A/UX
releases 3.1 and earlier versions and a programming technique that can be used
to work-around this limitation.

DISCUSSION --

The memory limitation occurs if an application attempts to expand the size of
its data segment (or heap space) by at least 256K bytes (cumulative) after it
has allocated one or more shared memory segments which were attached at an
address chosen by the system (i.e., in the invocation of the shmat(2) system
call, the value of the shmaddr argument is zero).

In Figure 1, the address space of the application is depicted as it might appear
immediately following the invocation of shmat(2). The arrow indicates the
direction of future growth of the application's data segment.

This memory limitation is perceived by the application whether it attempts to
expand its data segment directly using sbrk(2) or indirectly using malloc(3) or
some interface supported by its run-time environment, e.g., an interpreted
language. Malloc(3) and sbrk(2) will fail and set errno to ENOMEM (decimal
12).

 | | low address
 | text segment |
 | |

 | |

 | |
 | data segment |

Tech Info Library

 | || |
 -----------||---------------
 | || |
 ----------\||/--------------
 | \/ |
 | shared memory segment |
 | |

 | |
 | |
 | |

 | |
 | stack |
 | | high address

 Figure 1. Application Address Space after Invocation of shmat(2)

The ENOMEM error indicates that the available address space is not large enough
to fulfill the requested growth of the data segment. In Figure 2, the address
space of the application is depicted as it might appear when the ENOMEM error
occurs. In the scenario described above, the error occurs because the expanded
data segment would overlap the shared memory segment(s), which would be a
violation of the virtual memory protection scheme. Even though there is still
additional "free space" in the applications address space, the system cannot
fragment the data segment, since some applications expect it to be contiguous.

 | | low address
 | text segment |
 | |

 | |

 | |
 | data segment |
 | |

 | |
 | shared memory segment |
 | |

 | |
 | |
 | |

 | |
 | stack |
 | | high address

 Figure 2. Application Address Space When ENOMEM Occurs

The work-around for this problem is for the application to request a specific
address as the second argument to shmat(2). Given a prudent choice for the
value of this address, the application can arrange for the shared memory segment
to be placed high enough in memory to avoid conflict with the growing heap. The
value of this address may be determined by obtaining the current size of the
data segment and then adding the maximum future data requirements of the
process.

In the following code fragment, the programmer has determined that the maximum
future data requirements for this application is 0x100000 (5 MB); when sbrk(2)
is called with an argument of zero, it returns the current end of the data
segment. The shared memory segment will be attached at an address which is at
least 5 MB beyond the end of the data segment.

 if (shmat(shmid, sbrk(0) + 0x100000, SHM_RND) == -1)
 {
 perror("shmat");
 }

Support Information Services

Copyright 1994, Apple Computer, Inc.

15683Tech Info Library Article Number:

