
Newton: Types of Memory & Memory Errors (11/94)

Revised: 4/21/97
Security: Everyone

Newton: Types of Memory & Memory Errors (11/94)

==

Article Created: 31 October 1994
Article Reviewed/Updated: 22 November 1994

TOPIC ---

This article describes the different types of memory on the Newton MessagePad,
how to get the most out of your existing memory, and memory related errors.

DISCUSSION --

The Newton has two kinds of memory, system memory and user storage. System
memory is analogous to the RAM memory in a desktop computer, user storage to the
storage space on a disk drive. The memory space reported in the Memory
Preferences window is for user storage. There are shareware packages that
measure system memory (heap space), but it is not displayed by the Newton system
software. This system memory is further broken down into different uses, but we
won't expand on what they are in this discussion. It is in the system memory
that programs actually run and store the intermediate data that they create.
Permanent data, as well as the packages themselves are stored in the user
storage.

When an out-of-memory-restart error occurs, the Newton runs out of system
memory. That is, some part of the system or a package made a request to use
system memory and that request failed due to insufficient memory. The machine
was unable to proceed without the memory so it did the only thing that it could,
offer to reset the Newton MessagePad. In simple terms, it offered to wipe the
slate clean and start again. Tapping reset in the error dialog has the same
effect on system memory as opening the battery door and pressing reset.

Normally there is enough system memory to go around. For instance, many members
of the PIE (Personal Interactive Electronics) division have been running
MessagePad 110's since product launch and never gotten an out-of-memory-restart
error. But, each time you load a package, either by downloading, or by inserting
a PCMCIA card, that package is "installed". Installation integrates the package
into the Newton. It uses some small amount of system memory to do this. Install
enough packages, and the Newton MessagePad runs out of system memory. If this

Tech Info Library

were the only cause of out-of-memory-restart errors, the problem would rarely
occur. Installing a package takes up only a few hundred bytes. Installing
hundreds of packages would be required to run out of memory this way.

Removing the PCMCIA card or removing the software from the card or the internal
user storage removes not only the package, but also the integration information,
thereby freeing up the same small amount of system memory.

Packages can do other things to make permanent use of system memory. They can
create objects and then leave references to those objects around so the system
can't get rid of them. Resetting the Newton removes all these objects and
references until a package creates them again. It is this "garbage data" left
around by packages that contributes to memory problems. There are packages that
leave around 20K bytes or more of data each.

Why does this limitation exist?

On a desktop computer whenever you close or quit an application, the information
for that application is eliminated and the memory space reclaimed. Only when
many applications are run simultaneously does a system run out of memory . You
can attempt to run one application that asks for more memory than is available,
but this is a less common case. Most applications know how to live within their
own memory allocation. The system only has problems when several of them are run
simultaneously.

It is this issue of running simultaneously that we need to address. Not enough
has been said about the Newton MessagePad architecture in the press or in the
developer manuals. The Newton MessagePad is a new and different kind of
platform. It has distinct advantages that are not possible with older machines
(operating systems). It also has limitations, some of which are imposed by the
new architecture.

Consider a Macintosh or a Windows computer. A typical user has 8 to 32 megabytes
of RAM and at least 120 megabytes of disk. However, there are still many Mac
Plus computers out there with 1 Meg of RAM and a 20 Meg disk. These arguments
apply to them too, it's just a matter of scale. When running a program on this
type of machine, memory is allocated to the program when it is loaded from the
disk, perhaps a data file is loaded from the disk, and the program's function is
performed. Afterward the program and the data are flushed from the RAM and the
memory is reused to run the next program. When the program is not running, it's
dead. It can't receive messages, it can't respond to changes in its files, it
can't communicate.

Consider the size of that machine. There will be a day when 8 megabytes of RAM,
120 megabytes of disk and the power to run them will fit in the palm of your
hand and cost less than $600, but that day has not arrived yet.

The Newton MessagePad architecture is targeted at machines you can hold in your
hand for less than $600 today. That means that the storage of the machine must
be compressed in space and cost (not to mention battery power requirements). It
is this compression that led to Apple's creation of NewtonScript, an interpreted
language that is far more memory efficient than C or C++.

The Newton MessagePad architecture is also targeted at being a personal
assistant. As an assistant, all of its functions should be available all the
time. Even more importantly, it has an object oriented database, called "soups",
rather than files so that Newton functions and packages have access to all the
data. Cross functional (inter-package) access to data is allowed and even
encouraged.

Even when it's not "running", a Newton package can respond to changes in its
soups, it can respond to incoming data from modem, network, IR, or even messages
from other packages.

Newton packages can access the data in another package's soup. A fax editor
package can make use of the Names soup for its address book. It can get its data
from the NotePad, or from an e-mail message. A Contact Manager package can make
use of the Names soup to look up contact information. It can schedule items into
the To Do list, or the Calendar. Apple calls this Newton Intelligence.

There are single applications on desktop computers that integrate these sorts of
cross functions. These "all in one" applications exist because desktop machines
have not yet learned how to have the separate applications work together. As a
result, you can't have your favorite address book program communicate with your
favorite calendar program to create a contact manager function. The two programs
don't talk to one another.

Newton packages need to always be active in some way. When a package is loaded
into the Newton, the package tells the system about itself and its soups. It
prepares itself and the system to deal with its soup data and messages it might
receive. This causes the package to take up system memory even though the user
has not opened it. Again, only a very small amount of memory is used up for this
capability.

Not every package on the Newton, including those from Apple, has yet to exploit
all of the Newton's advantages. That is why it is important to get this message
out. Developers need to create packages that make use of Newton Intelligence. A
package which duplicates the information in another package's soup is wasting
storage space. In a sense, a package that duplicates the function of another
package is also wasting space. Packages should work together, use one another's
soups, and only provide the new functions that don't already exist.

Users who load packages that leave "garbage data" around will eventually see
out-of-memory-restart messages. The way to minimize this problem by not loading
packages that require a lot of permanent system memory. Watch out for these
packages and put them on a separate card. Run these packages by themselves.
When you are through running them, the Newton MessagePad should be reset. This
is an extreme measure, and only applicable if you are getting a lot of
out-of-memory-restart errors.

Here is another strategy. When you identify a particular package or combination
of packages that causes out-of-memory-restart errors, break up that particular
combination. "Break up" means don't have that combination installed
simultaneously. If you install lots of packages internally, move some of them to
cards that aren't normally loaded in the Newton MessagePad. If a couple of
packages are suspected of causing problems, then move them to separate cards so

that they are not loaded at the same time. Remove packages that have little or
marginal value.

As developers learn more about the Newton MessagePad, fewer packages will waste
space. Even now, the Newton performs well for the majority of customers. It
offers users and developers features that electronic products have not had
available before. Apple hopes more developers will take advantage of the unique
Newton architecture and build products that make efficient use of existing soups
and Newton functions. This will lead to a powerful integrated Newton system.

Questions & Answers

Q: How can customers identify packages that use more system memory?

A: There are various shareware packages that measure system memory
 (heap space). Users with access to one of these packages can
 measure the amount of system memory a package uses by measuring the
 system memory just before and just after running the package the first
 time. The amount that the system memory goes down is the amount used
 by the package. If the amount is more than one or two kilobytes then
 that package is using more memory than it should.

 Users who don't have access to a package that measures system memory,
 will have to infer which packages are causing problems. When out-of-
 memory-restart errors are frequent, the installed combination of
 packages is straining the Newton. Try to break up that combination
 until the errors stop. It's sort of like tracking down conflicting
 extensions on the Macintosh or conflicting memory resident applications
 on the MS-DOS PC.

Q. Is removing install scripts with a soup editor such as RemoveIt,
 StewPot, or Souper a good or bad idea to increase system memory?

A. It's a bad idea. The install script may contain code that the package
 needs while running. The package authors need to be the ones to modify
 a package to use less system memory. It's not a good idea to try and
 second guess the authors of the package.

Article Change History:
22 Nov 1994 - Renamed article.
07 Nov 1994 - Titled changed to reflect article.

Support Information Services

Copyright 1994, Apple Computer, Inc

16645Tech Info Library Article Number:

