
System 7: 32-Bit Addressing

Revised:       12/20/93
Security:      Everyone

System 7: 32-Bit Addressing

======================================================================

Article Created: 7 March 1991
Article Reviewed/Updated: 17 December 1993

TOPIC -----------------------------------------------------------

1. What is 32-bit addressing?
2. How does it work?
3. Why do I get Type 1 errors?

DISCUSSION ------------------------------------------------------

1. What is 32-bit addressing?
   --------------------------
32-bit addressing means that you can install and access more than 8MB of
physical RAM in your Macintosh. This means you can work with very large
data files, very large applications, or many applications concurrently.
32-bit addressing is most attractive to Macintosh users working with large
memory-intensive problems.  While virtually anyone can benefit from the
large amount of memory offered by 32-bit addressing, it will immediately
benefit database users, color-graphic users, CAD/CAM users, and
programmers. While 32-bit addressing may seem to benefit a small percentage
of Macintosh users today, users can expect to soon see powerful "general
purpose" tools benefit from 32-bit addressing.

More technically speaking, 32-bit addressing lets most recent Macintosh
models access the entire 1GB memory range of the 68030 microprocessor.  The
basic software and hardware of the Macintosh already support the 32-bit
addressing model, but any Macintosh using System 6 is limited to using only
8MB of memory because 32-bit addressing was not yet fully implemented.

In System 7, 32-bit addressing is fully implemented allowing most Macintosh
computers access to greater than 8MB of memory.  This expanded memory is
important for high-end users working with many applications, complex
graphics documents, large databases, and so on.

The term "addressing" refers to the number of binary digits (bits) that

Tech Info Library



make up each memory address.  Addressing directly determines the maximum
amount of memory possibly available.

2. How does it work?
   -----------------
Binary numbers

To understand what happens with addressing, it is first necessary to
understand what address bits are.  The number system we’re most accustomed
to is the decimal system, otherwise known as the Base 10 system.  In this
system, all the numbers are relative to ten digits (0-9).  When a number
value exceeds the tenth digit, we add one to the value in the next column
and and start over in the first column.  Hence, when 1 is added to the
number 09 we get 10.  When we add 1 to 099, we get 100, so forth and so on.

Base 10 relies on there being exactly ten unique values per digit. Base 10
is not the only number system around.  In the early days of computers, it
was realized that it is much simpler to build data storage device such as a
vacuum tube or a transistor with two possible value states(0 or 1) than it
was to build one with 10 possible values(0 through 9).  Therefore, someone
came up with the idea of defining information in Base 2 format.

With the Base 2 number system, instead of counting your digits 0,1,2,…,9
and then adding a one to the next column, you simply count your digits 0,1
and then add a one to the next column.  Hence, in the binary system the
number zero in represented by a 0, the number one by a 1 and the number two
by a 10, so forth and so on.

Here is a short table of some more examples:

     Base 10      Base 2
      ------     -------
             0        0000
           1        0001
           2        0010
           3        0011
           4        0100
           5        0101
           6        0110
           7        0111
           8        1000

If you expand this table out, you will see, the maximum number of values
you can represent with 4 binary digits(bits) is 16, with 16 bits, 65,536,
with 24 bits, 16,777,216 and with 32 bits, 4,294,967,296.  This is
identical to being able to represent 10,000 (0-9999) values with four
decimal digits and 100,000,000 (0-99,999,999)values with 8 decimal digits.

Macintosh address range
-----------------------
The original Macintoshes shipped with the 68000 microprocessor.  While this
CPU is capable of doing 32 bit operations, it has only 24 bit addressing



capability.  Which limits a 68000 based computer to 16,777,216 bytes of
address range.  When the Macintosh II came out with the 68020 which has
full 32 bit addressing capabilities, the possible address range was
increased to 4,294,967,296 bytes.

Now you’re probably wondering why you can only access 8MB in 24 bit mode.
The truth is you can access 16mb, but only 8mb is available for user data.
The other 8 is used for hardware vectors, NuBus slots, SCSI buffers etc.

The Problem
-----------
Since the 68000 is a true 32 bit processor, it stores 32 bits of
information for each memory address, but since the 68000 physically only
has 24 address lines, only the first 24 bits actually count.  This of
course means that 8 bits are wasted.

This is where creative programmers come in.  Back when the Macintosh only
had a 128k of RAM, the Operating System had to go to some extreme lengths
to ensure that application have enough memory to run.  The Macintosh Memory
manager allows blocks of memory to move, and/or be purged if the System is
having trouble fulfilling a memory request.  The original designers of the
Macintosh OS decided to use the last three of the unused bits in a 32 bit
memory address to indicate whether a block of memory can move, be purged or
if the block contains a resource item.

When System 7 was introduced, the Memory manager portion of the Macintosh
Operating system was modified extensively to support full 32 bit
addressing.  The Memory Manager no longer stores the movable, purgeable, or
resource flags in the last three bits of the memory block’s address,
instead, the Memory Manager stores this information elsewhere. The exact
location of these flags is not documented, since an application should not
attempt to manipulate these flags directly.

Setting these three magic bits are at the discretion of the programmer.
The Macintosh Operating System provides the programmer with the appropriate
routines to set these bits.  The problem is that to set these three bits,
the Operating System routines have to call other routines who have to call
still others etc.  The net result is that using the Operating System
routines to set these bits is quite inefficient when it comes to speed.
Therefore, prior the introduction of System 7, some creative programmers
with a need for speed, took it upon themselves to set these bits in the
memory block’s addresses directly thereby bypassing the overhead associated
with calling the Operating System routines.  Of course, the problem with
doing this is that System 7 no longer stores these three bits in the
address of the block of memory.  Another significant programming error
involves the other 5 bits of the 32 bit address.  Ordinarily, these bits
should remain unused and therefore, insignificant.  However, some
programmers, having realized that 5 bits are wasted decided to use them for
their own purposes, even though Apple Developer Technical Support began
warning them against this practice a full three years prior to the
introduction of System 7.



3. Why do I get Type 1 errors?
   --------------------------
The fundamental problem with setting the upper 8 bits of the address
directly is that with System 7 all 32 bits of information are used for
addressing.  Changing the value of any of the 8 bits changes the address of
the block of memory.  When an application or an init tries to access the
block of memory that now has an invalid address, the usual result is a Type
1 error.  This occurs because the first 24 bits of an address are used to
access memory locations between 0 and 16mb.  The upper eight bits are used
to access memory locations between 16mb and 4,096mb.  Since most
Macintoshes have less than 16mb of RAM, chances are this incorrect memory
location is pointing to an address that does not physically exist, and this
will yield a Type 1 (Bus Error).

In the event that the memory location does physically exists, then the
application or init will then operate on whatever information it finds at
the incorrect location.  Depending on what the application or init is
attempting to do, various errors may result.

Article Change History
----------------------
17 December 1993 - Updated with techshare information from Austin reps
21 August 1993 - Revised - To include information from another article.

Copyright 1991-1993, Apple Computer, Inc.

6919Tech Info Library Article Number:


